B-type natriuretic peptide (BNP) is a biomarker for heart failure, a serious and prevalent disease that requires rapid and accurate diagnosis. In this study, we developed a novel electrochemical biosensor for BNP detection based on CRISPR/Cas13a and chain substitution reaction. The biosensor consists of a DNA aptamer that specifically binds to BNP, a T7 RNA polymerase that amplifies the signal, a CRISPR/Cas13a system that cleaves the target RNA, and a two-dimensional DNA nanoprobe that generates an electrochemical signal. The biosensor exhibits high sensitivity, specificity, and stability, with a detection limit of 0.74 aM. The biosensor can also detect BNP in human serum samples with negligible interference, demonstrating its potential for clinical and point-of-care applications. This study presents a novel strategy for integrating CRISPR/Cas13a and chain substitution reaction into biosensor design, offering a versatile and effective platform for biomolecule detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.125966 | DOI Listing |
J Med Virol
December 2024
Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China.
Hepatitis E virus (HEV) poses a serious threat to both public health and animal food safety, thereby highlighting the demands for rapid, sensitive, and easy-to-use detection. This study aimed to develop a One-Pot assay using CRISPR/Cas13a for detecting HEV RNA, suitable for point-of-care testing (POCT) in resource-limited settings. CRISPR/Cas13a combined with reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription recombinase-aided amplification (RT-RAA) was applied to a One-Pot assay device.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), which presents worldwide prevalence. BLV caused substantial economic loss in China around the 1980s; then, it could not be detected for some time, until recently. Due to its latent and chronic characteristics, the efficient and accurate detection of BLV is of utmost significance to the timely implementation of control measures.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.
Clustered regularly interspaced short palindromic repeats (CRISPR) molecular diagnostic technology is one of the most reliable diagnostic tools for infectious diseases due to its short reaction time, high sensitivity, and excellent specificity. However, compared with fluorescent polymerase chain reaction (PCR) technology, CRISPR molecular diagnostic technology lacks high-throughput automated instrumentation and standardized detection reagents for high sensitivity, limiting its large-scale clinical application. In this study, a high-throughput automated device was developed by combining reagent lyophilization, extraction-free technology, and a one-pot consumable system.
View Article and Find Full Text PDFVirulence
December 2024
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Porcine epidemic diarrhoea virus (PEDV), a pathogenic microorganism that induces epidemic diarrhoea in swine, causes substantial economic damage to swine-farming nations. To prevent and control PEDV infections, the availability of upgraded and rapid virus detection techniques is crucial. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas)13a system, namely, programmability of CRISPR RNA (crRNA) and "collateral" promiscuous RNase activity of Cas13a after target RNA identification.
View Article and Find Full Text PDFMikrochim Acta
November 2024
West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
An advanced electrochemiluminescence (ECL) biosensor was developed that integrates T7 RNA polymerase amplification, ladder-branch hybridization chain reaction (HCR), and the precise targeting capabilities of CRISPR/Cas13a technology. The novelty of this research lies in the unique combination of these three cutting-edge technologies, which has not been previously utilized together in biosensing platforms, enabling highly sensitive and specific detection of biomolecules with exceptional precision. This innovative biosensor addresses the critical need for sensitive and specific detection of matrix metalloproteinase-2 (MMP-2), a key biomarker in cancer diagnostics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!