Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility. The mobility of excimer excitons intricately depends on the strength of excitonic coupling in terms of Förster-type diffusive exciton transfer processes. Given that the formation and mobility of excimer excitons are highly sensitive to molecular arrangements (packing geometries), conducting comprehensive investigations into the structure-property relationship in organic systems is crucial. In this study, we prepared three types of polycrystalline films of perylene bisimide (PBI) by varying substituents at the imide and bay positions, which allowed us to tailor the properties of excimer excitons and their mobility based on packing geometries and excitonic coupling strengths. By utilizing femtosecond transient absorption spectroscopy, we observed ultrafast excimer formation in the higher coupling regime, while in the lower coupling regime, the transition from Frenkel to excimer excitons occurs with a time constant of 500 fs. Under high pump-fluence, exciton-exciton annihilation processes occur, indicating the diffusion of excimer excitons. Intriguingly, employing a three-dimensional diffusion model, we derived a diffusion constant that is 3000 times greater in the high coupling regime than in the low coupling regime. To investigate the optoelectronic properties in the form of a bulk system, we fabricated -type organic field effect transistors and obtained 8000 times higher mobility in the high coupling regime. Furthermore, photocurrent measurements enable us to investigate the charge carrier transport by mobile excimer excitons, suggesting a 230-fold improvement in external quantum efficiency with tightly packing PBI molecules compared to the low coupling regime. These findings not only offer valuable insights into optimizing organic materials for optoelectronic devices but also unveil the intriguing potential of exciton migration within excimers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c19140 | DOI Listing |
Proc Natl Acad Sci U S A
December 2024
Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, QC H3A OB8, Canada.
The formation of excited dimer states, so called excimers, is an important phenomenon in many organic molecular semiconductor solid state aggregates. In contrast to Frenkel exciton-polarons, an excimer is long-lived and energetically low-lying due to stabilization resulting from a substantial reorganization of the intermolecular geometry. Here, we show that ultrafast electron diffraction can follow the dynamics of solid-state excimer formation in polycrystalline thin films of a molecular semiconductor, revealing both the key reaction modes and the eventual structure of the emitting state.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
The triplet excited states of molecules play an important role in photophysical processes, which has attracted great research interest. Perylene diimide (PDI) is a widely studied material closely associated with the generation of triplet states, and it is highly anticipated to become an electron acceptor material for improving photovoltaic conversion efficiency. In this work, we prepared dimers and tetramers composed of selenium-modified PDI-C5 ('-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) units.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture.
View Article and Find Full Text PDFNat Chem
November 2024
ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia.
The photophysical processes of singlet fission and triplet fusion have numerous emerging applications. They involve the separation of a photo-generated singlet exciton into two dark triplet excitons and the fusion of two dark triplet excitons into an emissive singlet exciton, respectively. The role of the excimer state and the nature of the triplet-pair state in these processes have been a matter of contention.
View Article and Find Full Text PDFJ Phys Chem B
July 2024
School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
Singlet fission (SF) is a triplet generation mechanism capable of turning a singlet exciton into two triplet excitons. It has the potential to enhance the power conversion efficiency of single-junction solar cells. Perylene diimides (PDIs) are a class of dye molecules with photovoltaic properties and are beginning to receive more and more attention due to their potential for SF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!