A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Universal Deoxidation of Semiconductor Substrates Assisted by Machine Learning and Real-Time Feedback Control. | LitMetric

Substrate oxidation is inevitable when exposed to ambient atmosphere during semiconductor manufacturing, which is detrimental to the fabrication of state-of-the-art devices. Optimizing the deoxidation process in molecular beam epitaxy (MBE) for random substrates poses a multidimensional challenge and is sometimes controversial. Due to variations in substrates and growth processes, the determination of the deoxidation condition heavily relies on the individual's expertise, yielding inconsistent results. This study employs a machine learning model that integrates interpolation and vision transformer (Interpolation-ViT) techniques. The model utilizes reflection high-energy electron diffraction videos as input to predict the status of the substrate, enabling automated deoxidation within a controlled architecture for various substrates. Furthermore, we highlight the potential of models trained on data from specific MBE equipment to achieve high-accuracy deployment on different pieces of equipment. In contrast to traditional methods, our approach holds exceptional value, as it standardizes deoxidation temperatures across diverse equipment and substrates. This significantly advances the standardization of the semiconductor process. The concepts and methods presented are expected to revolutionize semiconductor manufacturing processes in the optoelectronic and microelectronic industries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01765DOI Listing

Publication Analysis

Top Keywords

machine learning
8
semiconductor manufacturing
8
substrates
5
universal deoxidation
4
semiconductor
4
deoxidation semiconductor
4
semiconductor substrates
4
substrates assisted
4
assisted machine
4
learning real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!