Machine-learning algorithms have the potential to revolutionise diagnostic and prognostic tasks in health care, yet algorithmic performance levels can be materially worse for subgroups that have been underrepresented in algorithmic training data. Given this epistemic deficit, the inclusion of underrepresented groups in algorithmic processes can result in harm. Yet delaying the deployment of algorithmic systems until more equitable results can be achieved would avoidably and foreseeably lead to a significant number of unnecessary deaths in well-represented populations. Faced with this dilemma between equity and utility, we draw on two case studies involving breast cancer and melanoma to argue for the selective deployment of diagnostic and prognostic tools for some well-represented groups, even if this results in the temporary exclusion of underrepresented patients from algorithmic approaches. We argue that this approach is justifiable when the inclusion of underrepresented patients would cause them to be harmed. While the context of historic injustice poses a considerable challenge for the ethical acceptability of selective algorithmic deployment strategies, we argue that, at least for the case studies addressed in this article, the issue of historic injustice is better addressed through nonalgorithmic measures, including being transparent with patients about the nature of the current epistemic deficits, providing additional services to algorithmically excluded populations, and through urgent commitments to gather additional algorithmic training data from excluded populations, paving the way for universal algorithmic deployment that is accurate for all patient groups. These commitments should be supported by regulation and, where necessary, government funding to ensure that any delays for excluded groups are kept to the minimum. We offer an ethical algorithm for algorithms-showing when to ethically delay, expedite, or selectively deploy algorithmic systems in healthcare settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616300PMC
http://dx.doi.org/10.1111/bioe.13281DOI Listing

Publication Analysis

Top Keywords

algorithmic
9
selective deployment
8
ethical algorithm
8
diagnostic prognostic
8
algorithmic training
8
training data
8
inclusion underrepresented
8
algorithmic systems
8
case studies
8
underrepresented patients
8

Similar Publications

Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.

View Article and Find Full Text PDF

Background: Medical Humanities (MH) curricula integrate humanities disciplines into medical education to nurture essential qualities in future physicians. However, the impact of MH on clinical competencies during formative training phases remains underexplored. This study aimed to determine the influence of MH curricula on internship performance.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!