AI Article Synopsis

  • Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are highly aggressive tumors with low survival rates, yet the combination of Delta-24-RGD and ONC201 has shown potential for enhanced treatment efficacy.
  • In laboratory and mouse model studies, the combination treatment did not alter virus replication but demonstrated a synergistic or additive cytotoxic effect, leading to increased DNA damage and metabolic disruptions in tumor cells.
  • Additionally, the combination treatment improved survival rates in mice models and led to a shift in the tumor microenvironment towards a more proinflammatory state, indicating a stronger immune response against the tumors.

Article Abstract

Background: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated.

Methods: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq, and multiplexed immunofluorescence staining.

Results: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype.

Conclusions: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300018PMC
http://dx.doi.org/10.1093/neuonc/noae066DOI Listing

Publication Analysis

Top Keywords

phgg dmg
12
combination treatment
12
combination
8
pediatric high-grade
8
diffuse midline
8
human murine
8
murine phgg
8
delta-24-rgd/onc201 combination
8
dmg models
8
nuclear dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!