AI Article Synopsis

  • Evidence suggests that Human Cytomegalovirus (HCMV) might play a role in causing glioblastoma, a type of brain cancer, as it has been found in glioblastoma tissues.
  • Researchers successfully created CMV-Elicited Glioblastoma Cells (CEGBCs), which showed characteristics similar to glioblastoma, and these cells formed tumors in mice when xenografted.
  • The study confirmed the presence of specific cancer markers and HCMV genes in the tumors, supporting the idea that HCMV could be linked to glioblastoma development, potentially leading to new treatment strategies.

Article Abstract

Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257955PMC
http://dx.doi.org/10.1038/s41417-024-00767-7DOI Listing

Publication Analysis

Top Keywords

xenografted mice
8
glioblastoma
5
generation glioblastoma
4
glioblastoma mice
4
mice engrafted
4
engrafted human
4
human cytomegalovirus-infected
4
cytomegalovirus-infected astrocytes
4
astrocytes mounting
4
mounting evidence
4

Similar Publications

Ubiquitin‑specific protease 35 (USP35) was found to be involved in various tumor progression, but its role in breast cancer remains largely unknown. USP35 mRNA and protein expression in breast cancer tissues and cells were evaluated by qPCR and Western bolt (WB), respectively. Subsequently, flow cytometry and EDU labeling were used to evaluate breast cancer cell apoptosis and proliferation.

View Article and Find Full Text PDF

Disulfidptosis, a recently identified pathway of cellular demise, served as the focal point of this research, aiming to pinpoint relevant lncRNAs that differentiate between hepatocellular carcinoma (HCC) with and without vascular invasion while also forecasting survival rates and responses to immunotherapy in patients with vascular invasion (VI+). First, we identified 300 DRLRs in the TCGA database. Subsequently, utilizing univariate analysis, LASSO-Cox proportional hazards modeling, and multivariate analytical approaches, we selected three DRLRs (AC009779.

View Article and Find Full Text PDF

NK cells-derived extracellular vesicles potency in the B cell lymphoma biotherapy.

Front Immunol

December 2024

Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.

Introduction: Extracellular vesicles of Natural Killer cells (NKEV) exert an antitumor effect towards hematopoietic and solid tumors and have an immune modulating effect, suggesting a promising role in immune and biotherapy. In this study, a continuation of our former works, we demonstrated a network by mass spectrometry analysis between NKEV protein cargo and antitumor effects. Human healthy NKEV, both exosomes and microvesicles, have a significant and direct cytotoxic effect against human B cell lymphoma in and conditions.

View Article and Find Full Text PDF

Background: Modular (universal) CAR T-platforms were developed to combat the limitations of traditional CAR-T therapy, allowing for multiple targeting of tumor-associated antigens and the ability to control CAR-T cell activity. The modular CAR-T platform consists of a universal receptor (signaling module) that recognizes an adapter molecule on the soluble module, which is responsible for antigen recognition. Multiple platforms have been developed over the last 12 years, and some of them have entered the clinical trial phase.

View Article and Find Full Text PDF

Inhibitory Effect of PRMT5/MTA Inhibitor on MTAP-Deficient Glioma May Be Influenced by Surrounding Normal Cells.

Cancer Med

December 2024

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.

Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!