A 42-year climate data record of global sea surface temperature (SST) covering 1980 to 2021 has been produced from satellite observations, with a high degree of independence from in situ measurements. Observations from twenty infrared and two microwave radiometers are used, and are adjusted for their differing times of day of measurement to avoid aliasing and ensure observational stability. A total of 1.5 × 10 locations are processed, yielding 1.4 × 10 SST observations deemed to be suitable for climate applications. The corresponding observation density varies from less than 1 km yr in 1980 to over 100 km yr after 2007. Data are provided at their native resolution, averaged on a global 0.05° latitude-longitude grid (single-sensor with gaps), and as a daily, merged, gap-free, SST analysis at 0.05°. The data include the satellite-based SSTs, the corresponding time-and-depth standardised estimates, their standard uncertainty and quality flags. Accuracy, spatial coverage and length of record are all improved relative to a previous version, and the timeseries is routinely extended in time using consistent methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980736PMC
http://dx.doi.org/10.1038/s41597-024-03147-wDOI Listing

Publication Analysis

Top Keywords

climate applications
8
satellite-based time-series
4
time-series sea-surface
4
sea-surface temperature
4
temperature 1980
4
1980 climate
4
applications 42-year
4
42-year climate
4
climate data
4
data record
4

Similar Publications

Allometric equations for estimating above and belowground biomass of Colophospermum mopane in Mozambique.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.

Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.

View Article and Find Full Text PDF

Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.

View Article and Find Full Text PDF

Optimal life-cycle adaptation of coastal infrastructure under climate change.

Nat Commun

January 2025

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.

Climate change-related risk mitigation is typically addressed using cost-benefit analysis that evaluates mitigation strategies against a wide range of simulated scenarios and identifies a static policy to be implemented, without considering future observations. Due to the substantial uncertainties inherent in climate projections, this identified policy will likely be sub-optimal with respect to the actual climate trajectory that evolves in time. In this work, we thus formulate climate risk management as a dynamic decision-making problem based on Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs), taking real-time data into account for evaluating the evolving conditions and related model uncertainties, in order to select the best possible life-cycle actions in time, with global optimality guarantees for the formulated optimization problem.

View Article and Find Full Text PDF

Association between hydroclimatic factors and vegetation health: Impact of climate change in the past and future.

Sci Total Environ

January 2025

Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:

This study investigates the potential impact of future climate scenarios designated by different shared socioeconomic pathways (SSPs) on vegetation health. Considering the entire Indian mainland as the study region, which exhibits a diverse range of climate and vegetation regimes, we analysed long-term past (1981-2020) and future (2021-2100) changes in vegetation greenness across seven vegetation types and four seasons. In order to gain insight into the intricate interrelationships between vegetation and hydroclimatic factors (soil moisture, precipitation, solar radiation, and temperature), a Standardized Vegetation Index (SVI) is used as a proxy for vegetation health, and a bivariate copula-based probabilistic model is developed incorporating a Combined Climate Index (CCI) derived through Supervised Principal Component Analysis (SPCA) and the SVI.

View Article and Find Full Text PDF

Impact of climate change and land management on nitrate pollution in the high plains aquifer.

J Environ Manage

January 2025

Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA. Electronic address:

High concentrations of nitrate in groundwater pose risks to human and environmental health. This study evaluates the potential impact of climate change, land use, and fertilizer application rates on groundwater nitrate levels in the High Plains Aquifer under four Shared Socioeconomic Pathway (SSP) scenarios. A random forest model, with predictors such as fertilizer application rates, cropland coverage, and climate variables from six Coupled Model Intercomparison Project models, is used to project future nitrate concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!