Protein fibril self-assembly is a universal transition implicated in neurodegenerative diseases. Although fibril structure/growth are well characterized, fibril nucleation is poorly understood. Here, we use a computational-experimental approach to resolve fibril nucleation. We show that monomer hairpin content quantified from molecular dynamics simulations is predictive of experimental fibril formation kinetics across a tau motif mutant library. Hairpin trimers are predicted to be fibril transition states; one hairpin spontaneously converts into the cross-beta conformation, templating subsequent fibril growth. We designed a disulfide-linked dimer mimicking the transition state that catalyzes fibril formation, measured by ThT fluorescence and TEM, of wild-type motif - which does not normally fibrillize. A dimer compatible with extended conformations but not the transition-state fails to nucleate fibril at any concentration. Tau repeat domain simulations show how long-range interactions sequester this motif in a mutation-dependent manner. This work implies that different fibril morphologies could arise from disease-dependent hairpin seeding from different loci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980705PMC
http://dx.doi.org/10.1038/s41467-024-46446-xDOI Listing

Publication Analysis

Top Keywords

fibril
10
transition state
8
fibril nucleation
8
fibril formation
8
hairpin
5
hairpin trimer
4
transition
4
trimer transition
4
state amyloid
4
amyloid fibril
4

Similar Publications

Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) are increasingly prevalent cardiovascular conditions, particularly among the elderly population. These two conditions share common risk factors and often coexist, leading to a complex interplay that alters the clinical course of each other. The pathophysiology of HFpEF is multifaceted and intricately linked, with atrial disease serving as a common pathophysiological pathway.

View Article and Find Full Text PDF

The pathogenesis of Lewy body diseases (LBDs), including Parkinson's disease (PD), involves α-synuclein (α-Syn) aggregation that originates in peripheral organs and spreads to the brain. PD incidence is increased in individuals with chronic renal failure, but the underlying mechanisms remain unknown. Here we observed α-Syn deposits in the kidneys of patients with LBDs and in the kidney and central nervous system of individuals with end-stage renal disease without documented LBDs.

View Article and Find Full Text PDF

Extracorporeal cardiopulmonary resuscitation (ECPR) improves survival for prolonged cardiac arrest (CA) but carries significant risks and costs due to ECMO. Previous predictive models have been complex, incorporating both clinical data and parameters obtained after CPR or ECMO initiation. This study aims to compare a simpler clinical-only model with a model that includes both clinical and pre-ECMO laboratory parameters, to refine patient selection and improve ECPR outcomes.

View Article and Find Full Text PDF

Should digoxin immune fab be administered based solely on reported ingested amount in acute digoxin poisoning?

Am J Emerg Med

January 2025

Minnesota Regional Poison Center, Department of Pharmacy, Hennepin Healthcare, Minneapolis, MN, USA; Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth Campus, Duluth, MN, USA. Electronic address:

Acute digoxin poisoning is increasingly uncommon in emergency medicine. Furthermore, controversy exists regarding indications for antidotal digoxin immune fab in acute poisoning. In healthy adults, the fab prescribing information recommends administration based on "known consumption of fatal doses of digoxin: ≥10mg," while many emergency medicine textbooks suggest fab administration be driven by clinical features or potassium concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!