A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices. | LitMetric

Low-dimensional/three-dimensional perovskite heterojunctions have shown great potential for improving the performance of perovskite photovoltaics, but large organic cations in low-dimensional perovskites hinder charge transport and cause carrier mobility anisotropy at the heterojunction interface. Here, we report a low-dimensional/three-dimensional perovskite heterojunction that introduces strong aromatic conjugated low-dimensional perovskites in p-i-n devices to reduce the electron transport resistance crossing the perovskite/electron extraction interface. The strong aromatic conjugated π-conjugated network results in continuous energy orbits among [PbI] frameworks, thereby effectively suppressing interfacial non-radiative recombination and boosting carrier extraction. Consequently, the devices achieved an improved efficiency to 25.66% (certified 25.20%), and maintained over 95% of the initial efficiency after 1200 hours and 1000 hours under ISOS-L-1I and ISOS-D-1 protocols, respectively. The chemical design of strong aromatic conjugated molecules in perovskite heterojunctions provides a promising avenue for developing efficient and stable perovskite photovoltaics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980693PMC
http://dx.doi.org/10.1038/s41467-024-47112-yDOI Listing

Publication Analysis

Top Keywords

strong aromatic
16
perovskite heterojunctions
12
aromatic conjugated
12
low-dimensional/three-dimensional perovskite
8
perovskite photovoltaics
8
low-dimensional perovskites
8
perovskite
6
harnessing strong
4
aromatic
4
aromatic conjugation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!