Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Starch-derived films exhibit significant potential for packaging applications owing to their low cost, biodegradable characteristics, and natural abundance. Nonetheless, there is a demand to enhance their mechanical properties and moisture resistance to broaden their use. In this study, high performing sorbitol-plasticized starch/TiCT MXene nanocomposites, reinforced with ultra-low filler contents, were fabricated for the first time in literature. The MXene nanoplatelets were well-dispersed within the starch matrix while there was a tendency for the fillers to align in-plane, as revealed by polarized Raman spectroscopy. The produced nanocomposite films demonstrate remarkable effectiveness in blocking UV light, offering an additional valuable attribute in food packaging. The Young's modulus and tensile strength of starch films containing 0.75 wt% MXene increased from 439.9 and 11.0 MPa to 764.3 and 20.8 MPa, respectively. The introduction of 1 wt% MXene nanoplatelets reduced the water vapour permeability of starch films from 2.78 × 10 to 1.80 × 10 g/m h Pa due to the creation of highly tortuous paths for water molecules. Micromechanical theories were also implemented to understand further the reinforcing mechanisms in the biobased nanocomposites. The produced starch nanocomposites not only capitalize on the biodegradable and renewable nature of starch but also harness the unique properties of nanomaterials, paving the way for sustainable and high-performance packaging solutions that align with both consumer and environmental demands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!