Chitin nanofibrils assisted 3D printing all-chitin hydrogels for wound dressing.

Carbohydr Polym

College of Chemistry and Molecular Science, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China. Electronic address:

Published: June 2024

The direct ink writing technique used in 3D printing technology is generally applied to designing biomedical hydrogels. Herein, we proposed a strategy for preparing all-chitin-based inks for wound dressing via direct ink writing technique. The β-chitin nanofibers (MACNF) with a high aspect ratio were applied as a nanofiller to modulate the rheological properties of the alkaline dissolved chitin solution. The printing fidelity significantly depends on the MACNF introduction amount to the composite ink. 5-10 wt% MACNF ratio showed superior printing performance. The printed scaffold showed a uniform micron-sized pore structure and a woven network of nanofibers. Due to the good biocompatibility of chitin and the stereoscopic spatial skeleton, this scaffold showed excellent performance as a wound dressing, which can promote cell proliferation, collagen deposition and the angiogenesis of wounds, demonstrating its potential in biomedical applications. This approach successfully balanced the chitinous printability and biofunctions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122028DOI Listing

Publication Analysis

Top Keywords

wound dressing
12
dressing direct
8
direct ink
8
ink writing
8
writing technique
8
chitin nanofibrils
4
nanofibrils assisted
4
printing
4
assisted printing
4
printing all-chitin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!