Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetic foot ulcers (DFUs) are one of the most serious and devastating complication of diabetes, manifesting as foot ulcers and impaired wound healing in patients with diabetes mellitus. To solve this problem, sulfated hyaluronic acid (SHA)/collagen-based nanofibrous biomimetic skins was developed and used to promote the diabetic wound healing and skin remodeling. First, SHA was successfully synthetized using chemical sulfation and incorporated into collagen (COL) matrix for preparing the SHA/COL hybrid nanofiber skins. The polyurethane (PU) was added into those hybrid scaffolds to make up the insufficient mechanical properties of SHA/COL nanofibers, the morphology, surface properties and degradation rate of hybrid nanofibers, as well as cell responses upon the nanofibrous scaffolds were studied to evaluate their potential for skin reconstruction. The results demonstrated that the SHA/COL, SHA/HA/COL hybrid nanofiber skins were stimulatory of cell behaviors, including a high proliferation rate and maintaining normal phenotypes of specific cells. Notably, SHA/COL and SHA/HA/COL hybrid nanofibers exhibited a significantly accelerated wound healing and a high skin remodeling effect in diabetic mice compared with the control group. Overall, SHA/COL-based hybrid scaffolds are promising candidates as biomimetic hybrid nanofiber skin for accelerating diabetic wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!