Degradation and fermentation of hyaluronic acid by Bacteroides spp. from the human gut microbiota.

Carbohydr Polym

Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China. Electronic address:

Published: June 2024

Bacteroides spp. are prominent members of the human gut microbiota that play critical roles in the metabolism of complex carbohydrates from the daily diet. Hyaluronic acid (HA) is a multifunctional polysaccharide which has been extensively used in the food and biomedical industry. However, how HA is degraded and fermented by Bacteroides spp. has not been fully characterized. Here, we comprehensively investigated the detailed degradation profiles and fermentation characteristics of four different HAs with discrete molecular weight (Mw) by fourteen distinctive Bacteroides spp. from the human gut microbiota. Our results indicated that high-Mw HAs were more degradable and fermentable than low-Mw HAs. Interestingly, B. salyersiae showed the best degrading capability for both high-Mw and low-Mw HAs, making it a keystone species for HA degradation among Bacteroides spp.. Specifically, HA degradation by B. salyersiae produced significant amounts of unsaturated tetrasaccharide (udp4). Co-culture experiments indicated that the produced udp4 could be further fermented and utilized by non-proficient HA-degraders, suggesting a possible cross-feeding interaction in the utilization of HA within the Bacteroides spp.. Altogether, our study provides novel insights into the metabolism of HA by the human gut microbiota, which has considerable implications for the development of new HA-based nutraceuticals and medicines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122074DOI Listing

Publication Analysis

Top Keywords

bacteroides spp
24
human gut
16
gut microbiota
16
hyaluronic acid
8
spp human
8
bacteroides
6
spp
6
degradation
4
degradation fermentation
4
fermentation hyaluronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!