This paper reports an environment-friendly biobased foam made with cellulose nanofiber (CNF) and a biobased hyperbranched crosslinker, glycerol succinic anhydride (GSA). As a biobased hyperbranched crosslinker, carboxyl-terminated GSA is synthesized through a straightforward esterification process involving glycerol and succinic anhydride. The GSA-crosslinked CNF (GSA/CNF) foam is prepared using a facile, sustainable, cost-effective, and efficient solvent-exchange method. The resulting foam exhibits notable characteristics, including improved dimensional stability, remarkably low density (13.41 mg/cm) with high porosity (>99 %), and exceptional compressive strength (494 kPa) and modulus (452 kPa). Further, the foam offers outstanding sound absorption capabilities with a coefficient of 0.986 at 2 kHz and remarkably low thermal conductivity (30.18 mW/mK), significantly lower than commonly used and reported porous materials, indicating its potential as an efficient, environmentally friendly sound absorption and thermal insulation material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122016 | DOI Listing |
Adv Mater
January 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
Dynamic covalent polymer networks (DCPN) provide an important solution to the challenging recyclability of thermoset elastomers. However, dynamic bonds exhibit relatively weak bond energies, considerably decreasing the mechanical properties of DCPN. Herein, a novel reinforcement strategy for DCPN involving the in situ formation of supramolecular organic nanofillers through asynchronous polymerization is proposed.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Biological Sciences and Engineering Indian Institute of Technology, Palaj, Gandhinagar 382355, India.
The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration.
View Article and Find Full Text PDFPharmaceutics
November 2024
The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China.
The efficient generation of complex initial structures for polymers remains a critical challenge in the field of molecular simulation. This necessitates the development of high-quality and highly efficient modeling algorithms. Inspired by fundamental polymerization reactions, we propose a general algorithm for an efficient de novo polymer model building, resulting in the development of the eXtendable Polymer Builder (XPB) package.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstr. 34/36, 14195, Berlin, Germany.
Herein hyperbranched polyethyleneimine (hPEI) cryogels are reported for the selective and reversible adsorption of elemental chlorine. The cryogels are prepared in an aqueous solution by crosslinking with glutaraldehyde at subzero temperatures. The final macroporous composites bearing ammonium chloride groups are obtained after freeze-drying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!