Isolation and microbial transformation of tea sapogenin from seed pomace of Camellia oleifera with anti-inflammatory effects.

Chin J Nat Med

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Published: March 2024

In the current study, tea saponin, identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel., was meticulously extracted and hydrolyzed to yield five known sapogenins: 16-O-tiglogycamelliagnin B (a), camelliagnin A (b), 16-O-angeloybarringtogenol C (c), theasapogenol E (d), theasapogenol F (e). Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites (a1-a6). The anti-inflammatory potential of these compounds was assessed using pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns molecules (DAMPs)-mediated cellular inflammation models. Notably, compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1)-induced inflammation, surpassing the efficacy of the standard anti-inflammatory agent, carbenoxolone. Conversely, compounds d, a3, and a6 selectivity targeted endogenous HMGB1-induced inflammation, showcasing a pronounced specificity. These results underscore the therapeutic promise of C. oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(24)60598-4DOI Listing

Publication Analysis

Top Keywords

seed pomace
8
pomace camellia
8
camellia oleifera
8
molecular patterns
8
hmgb1-induced inflammation
8
isolation microbial
4
microbial transformation
4
transformation tea
4
tea sapogenin
4
sapogenin seed
4

Similar Publications

Waste-to-Taste: Transforming Wet Byproducts of the Food Industry into New Nutritious Foods.

Chimia (Aarau)

December 2024

Sustainable Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Food and beverage production generates enormous amounts of spent residues in the form of pomaces, pulps, grains, skins, seeds, etc. Although these sidestreams remain nutritious, their conversion to foods can be complicated by issues of digestibility and processing, particularly when the residues are wet and therefore highly susceptible to microbial degradation. Ideally, these sidestreams could be stabilized and then re-circulated into food, instead of being diverted to waste, animal feed, or biofuels.

View Article and Find Full Text PDF

The study was carried out to evaluate the availability, use as livestock feed and nutritional value of fruit waste in a few chosen urban (within) and peri-urban (around) areas of West Arsi and Sidama Regional State, Ethiopia. The study areas were chosen using a muti-stage purposive sampling technique and 306 respondents in total-102 from each of Shashemene, Hawassa and Yirgalem-were randomly chosen and interviewed. We used established methodology to examine the nutritional values of six (avocado seed, avocado peel with pulp, papaya pomace, mango, pineapple and banana peels) commonly used fruit waste (FBPs) samples for chemical composition and digestibility analysis.

View Article and Find Full Text PDF

The cider-making industry in Asturias generates between 9000 and 12,000 tons of apple pomace per year. This by-product, the remains of the apple pressing, and made up of peel, flesh, seeds and stems, is a valuable material, containing substantial amounts of antioxidant compounds associated with healthy properties. Polyphenols such as dihydrochalcones and quercetin glycosides, and triterpenic acids, among which ursolic acid is a major compound, are the main antioxidant families described in apple pomace.

View Article and Find Full Text PDF

Apple Pomace as a Potential Source of Oxidative Stress-Protecting Dihydrochalcones.

Antioxidants (Basel)

September 2024

Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria.

Among fruits, the apple is unique for producing large amounts of the dihydrochalcone phloridzin, which, together with phloretin, its aglycone, is valuable to the pharmaceutical and food industries for its antidiabetic, antioxidant, and anticarcinogenic properties, as well as its use as a sweetener. We analysed the phloridzin concentration, total phenolic content, and antioxidant activity in the peel, flesh, seeds, juice, and pomace of 13 international and local apple varieties. In the unprocessed fruit, the seeds had the highest phloridzin content, while the highest total phenolic contents were mostly found in the peel.

View Article and Find Full Text PDF

Wine production is one of the most important agricultural activities. The winemaking process generates a considerable volume of different residues characterized as by-products, such as pomace, seeds, stems, and skins. By-products are rich in polyphenols with antioxidant and antibacterial properties and may act as bacteriostatic or bactericidal agents against food-borne pathogens, improving food safety by enhancing antibiotic efficacy and reducing bacterial resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!