Current studies indicate that pathological modifications of tau are associated with mitochondrial dysfunction, synaptic failure, and cognitive decline in neurological disorders and aging. We previously showed that caspase-3 cleaved tau, a relevant tau form in Alzheimer's disease (AD), affects mitochondrial bioenergetics, dynamics and synaptic plasticity by the opening of mitochondrial permeability transition pore (mPTP). Also, genetic ablation of tau promotes mitochondrial function boost and increased cognitive capacities in aging mice. However, the mechanisms and relevance of these alterations for the cognitive and mitochondrial abnormalities during aging, which is the primary risk factor for AD, has not been explored. Therefore, in this study we used aging C57BL/6 mice (2-15 and 28-month-old) to evaluate hippocampus-dependent cognitive performance and mitochondrial function. Behavioral tests revealed that aged mice (15 and 28-month-old) showed a reduced cognitive performance compared to young mice (2 month). Concomitantly, isolated hippocampal mitochondria of aged mice showed a significant decrease in bioenergetic-related functions including increases in reactive oxygen species (ROS), mitochondrial depolarization, ATP decreases, and calcium handling defects. Importantly, full-length and caspase-3 cleaved tau were preferentially present in mitochondrial fractions of 15 and 28-month-old mice. Also, aged mice (15 and 28-month-old) showed an increase in cyclophilin D (CypD), the principal regulator of mPTP opening, and a decrease in Opa-1 mitochondrial localization, indicating a possible defect in mitochondrial dynamics. Importantly, we corroborated these findings in immortalized cortical neurons expressing mitochondrial targeted full-length (GFP-T4-OMP25) and caspase-3 cleaved tau (GFP-T4C3-OMP25) which resulted in increased ROS levels and mitochondrial fragmentation, along with a decrease in Opa-1 protein expression. These results suggest that tau associates with mitochondria and this binding increases during aging. This connection may contribute to defects in mitochondrial bioenergetics and dynamics which later may conduce to cognitive decline present during aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2024.03.017 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFClin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
Cell Biochem Funct
January 2025
Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
Background: Mounting evidence suggests that Parkinson's disease (PD) and inflammatory bowel disease (IBD) are closely associated and becoming global health burdens. However, the causal relationships and common pathogeneses between them are uncertain. Furthermore, they are uncurable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!