A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HemoDL: Hemolytic peptides prediction by double ensemble engines from Rich sequence-derived and transformer-enhanced information. | LitMetric

Hemolytic peptides can trigger hemolysis by rupturing red blood cells' membranes and triggering cell disruption. Due to the labor-intensive and time-consuming in-lab identification process, accurate, high-throughput hemolytic peptide prediction is crucial for the growth of peptide sequence data in proteomics and peptidomics. In this study, we offer the HemoDL ensemble learning model, which learns the distinct distribution of sequence characteristics for predicting the hemolytic activity of peptides using a double LightGBM framework. To determine the most informative encoding features, we compare 17 widely used features across four benchmark datasets. Our investigation reveals that CTD, BPF, Charge, AAC, GDPC, ATC, QSO, and transformer-based features exhibit more positive contributions to detecting the hemolytic activity of peptides. Comparison with eight state-of-the-art methods demonstrates that HemoDL outperforms other models, attaining higher Matthews Correlation Coefficient values on four test datasets, ranging from 6.30% to 16.04%, 6.63%-11.26%, 4.76%-9.92%, and 7.41%-15.03%, respectively. Additionally, we provide the HemoDL with a user-friendly graphical interface available at https://github.com/abcair/HemoDL. In summary, the HemoDL model, leveraging CTD, BPF, Charge, AAC, GDPC, ATC, QSO and transformer-based encoding features within a double LightGBM learning framework, achieves high accuracy in predicting the hemolytic activity of peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2024.115523DOI Listing

Publication Analysis

Top Keywords

hemolytic activity
12
activity peptides
12
hemolytic peptides
8
predicting hemolytic
8
double lightgbm
8
encoding features
8
ctd bpf
8
bpf charge
8
charge aac
8
aac gdpc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!