Nature-based solutions are encouraged for treating oilfield produced water from oil and gas extraction, a crucial undertaking that aligns with the Canadian oil sands industry's ambitious goal of zero waste, and the globally recognized Sustainable Development Goals (SDGs) pertaining to water conservation and ecosystem preservation. This study explored the use of peat-mineral mix (PMM), a leftover of inevitable oil sands mining, for treating low and high-strength wastewaters during biofiltration, which contained large molecular weight (44.3 kDa), which include alcohols, aliphatics, aromatics, and ketones, and can impart high toxicity to both fauna and flora (MicroTox: 99 %). The breakthrough curve indicated an effective initial adsorption phase driven by advection within the column dynamics. For complete organics removal and mechanistic insights, the wastewater was re-circulated in a continuous mode for up to 42 days. Here, we found that chemical oxygen demand was reduced from ∼85,000 mg/L to ∼965 mg/L). Kinetics investigations along with physicochemical characterization of PMM and wastewater suggested that chemisorption and anaerobic digestion contributed to the overall removal of contaminants. Chemisorption, led by hydrogen bonding and hydrophobic interactions, was the dominant mechanism, with a limited contribution from physical adsorption (surface area: 2.85 m2/g). The microbial community within the PMM bed was rich/diverse (Shannon > 6.0; Chao1 > 600), with ∼ 50 % unclassified phylotypes representing 'microbial dark matter'. High electric conductivity (332.1 μS cm) of PMM and the presence of Geobacter, syntrophs, and Methanosaeta suggest that direct interspecies electron transfer was likely occurring during anaerobic digestion. Both low and high-strength wastewaters showed effective removal of dissolved organics (e.g., naphthenic acids, acid extractable fraction, oil and grease content), nutrients, and potentially toxic metals. The successful use of PMM in treating oilfield produced water offers promising avenues for embracing nature-based remediation solutions at oil refining sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!