Duchenne Muscular Dystrophy (DMD) is one of the most frequent childhood dystrophies, affecting cardiopulmonary functions and walking ability. One of the main symptoms is fatigue, which is caused by altered muscle metabolism related to energy expenditure (EE). Aquatic physiotherapy is a therapeutic modality that facilitates the maintenance of this posture because of immersion on the body. This cross-sectional observational study aimed to compare the EE on the ground and water of individuals with DMD through oxygen consumption in the maintenance of sitting posture. The individuals were in a sitting position on the ground and in the water for 20 min for the assessments. The variables peripheral oxygen saturation, heart rate, maximum expiratory pressure, maximum inspiratory pressure, forced vital capacity, respiratory quotient (RQ), and oxygen consumption per kilogram of body weight (VO /kg) were compared, adopting a significance of 5 %. No difference was found between medians and quartiles of RQ when comparing the two environments. The same was observed for VO /Kg values on the ground and in water. The data from this study demonstrate that the EE of individuals with DMD did not change when maintaining a sitting posture on the ground and in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nmd.2024.03.004 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFGround Water
January 2025
Département de Géologie et de génie géologique, Université Laval, Québec, Canada.
Deep monitoring wells with long screens crossing the transition zone between freshwater and saltwater are often used in coastal areas to characterize fresh groundwater resources and the depth of saline groundwater. However, past studies have demonstrated that long-screen wells can lead to biased observations of the transition zone, since vertical flow within the borehole can modify the shape and elevation of the transition zone in and around the borehole compared to undisturbed conditions without a well. Here, field observations and variable-density numerical flow simulations are used to evaluate, under natural flow conditions, how the installation of long-screen wells can provide time-varying biased observations of the freshwater-saltwater transition zone, and how various aquifer and well parameters affect the magnitude of these biases.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
As a typical ecologically fragile area, the Wudong Coal Mine region in Xinjiang generates large accumulations of coal gangue each year, which, in the alkaline soil environment, can easily lead to significant leaching and accumulation of As. This study developed a stabilizer (CFD) using cement, fly ash, and desulfurized gypsum to modify in-situ soil in the Xinjiang mining area, resulting in a modified solidified soil with excellent geotechnical performance and As stabilization capability. The study results showed that when CFD content exceeded 14.
View Article and Find Full Text PDFToxics
January 2025
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
Atrazine causes serious contamination of agricultural soils and groundwater. This study investigated the influence mechanism of sterilized soil (CKs), unsterilized soil (CKn), sterilized soil amended with 45 (SsV1), 60 (SsV2), 75 (SsV3) days of vermicompost (the maturity days of vermicompost), and unsterilized soil amended with 45 (SnV1), 60 (SnV2), 75 (SnV3) days of vermicompost on atrazine catabolism. The atrazine degradation experiment lasted for 40 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!