Combining thermosonication microstress and pineapple peel extract addition to achieve quality and post-acidification control in yogurt fermentation.

Ultrason Sonochem

College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China. Electronic address:

Published: May 2024

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 T lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995858PMC
http://dx.doi.org/10.1016/j.ultsonch.2024.106857DOI Listing

Publication Analysis

Top Keywords

pineapple peel
8
lactic acid
8
antioxidant activities
8
control group
8
proposed combination
8
metabolism leading
8
group
5
combining thermosonication
4
thermosonication microstress
4
microstress pineapple
4

Similar Publications

Cellulose, the most abundant biopolymer on Earth, is biodegradable, nontoxic, and derived from renewable sources. Its properties and applications depend on the extraction methods and sources, making plant waste reuse a sustainable production option. This study aimed to assess the potential of cowpea pod skin () as a source of microcellulose (CPMC) using a chemical-mechanical process involving ball milling combined with acid hydrolysis.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.

View Article and Find Full Text PDF

Valorization of pineapple (ANANAS comosus) peel waste for levan production: Assessment of biological activities.

Int J Biol Macromol

January 2025

Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India. Electronic address:

Levan canopies a pivotal role in all the emerging sectors owing to its non-toxic and biodegradable nature. However, their expensive production impeded their commercialization and made them uneconomical. Hence the current work is focused on harnessing the pineapple peel as a viable substrate for bacterial fermentation to promote levan production.

View Article and Find Full Text PDF

The study was carried out to evaluate the availability, use as livestock feed and nutritional value of fruit waste in a few chosen urban (within) and peri-urban (around) areas of West Arsi and Sidama Regional State, Ethiopia. The study areas were chosen using a muti-stage purposive sampling technique and 306 respondents in total-102 from each of Shashemene, Hawassa and Yirgalem-were randomly chosen and interviewed. We used established methodology to examine the nutritional values of six (avocado seed, avocado peel with pulp, papaya pomace, mango, pineapple and banana peels) commonly used fruit waste (FBPs) samples for chemical composition and digestibility analysis.

View Article and Find Full Text PDF

Influence of sonication-assisted fermentation on the physicochemical features and antioxidant activities of yogurts fortified by polyphenol-rich pineapple peel powder with varied chemical profiling.

Food Res Int

December 2024

College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China. Electronic address:

This study investigated the effects of pineapple peel powder with varied chemical profiles and sonication-assisted polyphenol biotransformation during fermentation on the quality characteristics of yogurt products. It aimed at exploring the feasibility of sonication-assisted fermentation to enhance the physicochemical properties, control post-acidification, and improve antioxidant activities in yogurts fortified with polyphenol-rich pineapple peel powder. Targeted analysis showed that polyphenol-rich pineapple dietary fiber obtained by ultrasonication-assisted extraction (NPFU) exhibited the slowest rates of acidification, highest antioxidant capacity, and lowest degree of whey separation at 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!