Objective: Achieving appropriate spinopelvic alignment has been shown to be associated with improved clinical symptoms. However, measurement of spinopelvic radiographic parameters is time-intensive and interobserver reliability is a concern. Automated measurement tools have the promise of rapid and consistent measurements, but existing tools are still limited to some degree by manual user-entry requirements. This study presents a novel artificial intelligence (AI) tool called SpinePose that automatically predicts spinopelvic parameters with high accuracy without the need for manual entry.

Methods: SpinePose was trained and validated on 761 sagittal whole-spine radiographs to predict the sagittal vertical axis (SVA), pelvic tilt (PT), pelvic incidence (PI), sacral slope (SS), lumbar lordosis (LL), T1 pelvic angle (T1PA), and L1 pelvic angle (L1PA). A separate test set of 40 radiographs was labeled by four reviewers, including fellowship-trained spine surgeons and a fellowship-trained radiologist with neuroradiology subspecialty certification. Median errors relative to the most senior reviewer were calculated to determine model accuracy on test images. Intraclass correlation coefficients (ICCs) were used to assess interrater reliability.

Results: SpinePose exhibited the following median (interquartile range) parameter errors: SVA 2.2 mm (2.3 mm) (p = 0.93), PT 1.3° (1.2°) (p = 0.48), SS 1.7° (2.2°) (p = 0.64), PI 2.2° (2.1°) (p = 0.24), LL 2.6° (4.0°) (p = 0.89), T1PA 1.1° (0.9°) (p = 0.42), and L1PA 1.4° (1.6°) (p = 0.49). Model predictions also exhibited excellent reliability at all parameters (ICC 0.91-1.0).

Conclusions: SpinePose accurately predicted spinopelvic parameters with excellent reliability comparable to that of fellowship-trained spine surgeons and neuroradiologists. Utilization of predictive AI tools in spinal imaging can substantially aid in patient selection and surgical planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494712PMC
http://dx.doi.org/10.3171/2024.1.SPINE231252DOI Listing

Publication Analysis

Top Keywords

spinopelvic parameters
12
artificial intelligence
8
pelvic angle
8
fellowship-trained spine
8
spine surgeons
8
excellent reliability
8
spinopelvic
5
parameters
5
development validation
4
validation artificial
4

Similar Publications

Background: There is no consensus in the literature regarding the optimal treatment method for posterior pelvic ring injuries. This study aims to compare the radiologic and clinical outcomes, as well as complications of spinopelvic fixation (SPF) and iliosacral screw fixation (ISF) in patients with posterior pelvic ring injuries.

Methods: This retrospective study analyzed 54 patients (37 females, 17 males; mean age 38.

View Article and Find Full Text PDF

Background: Adults with spinal deformity (ASD) are known to have spinal malalignment, which can impact their quality of life and their autonomy in daily life activities. Among these tasks, ascending and descending stairs is a common activity of daily life that might be affected.

Research Question: What are the main kinematic alterations in ASD during stair ascent and descent?

Methods: 112 primary ASD patients and 34 controls filled HRQoL questionnaires and underwent biplanar X-from which spino-pelvic radiographic parameters were calculated.

View Article and Find Full Text PDF

Background: Proper positioning of a total hip arthroplasty (THA) plays a crucial role in the success and long-term survivorship of the implant. Cup positioning within the Lewinnek Safe Zone (LSZ) does not, however, avoid implant dislocation. Thus, the concept of a functional cup position has been introduced.

View Article and Find Full Text PDF

Aims: Overall sagittal flexion is restricted in patients who have undergone both lumbar fusion and total hip arthroplasty (THA). However, it is not evident to what extent this movement is restricted in these patients and how this influences quality of life (QoL). The purpose of this study was to determine the extent to which hip-lumbar mobility is decreased in these patients, and how this affects their QoL score.

View Article and Find Full Text PDF

As PI-LL mismatch is an effective index for spinal surgery and PI-LL less than 10 probably indicates better quality of life, this study aimed to assess spinopelvic parameters, lumbar instability, and lumbar muscle morphology in patients with chronic low back pain (CLBP) with different PI-LL mismatches. This cross-sectional study included 158 CLBP patients. The association between lumbar extensor muscle morphology (measured from magnetic resonance imaging) and spinopelvic parameters (measured from standing lateral radiographs) and lumbar instability (measured from lumbar flexion/extension radiographs) was compared between two groups of patients with different PI-LL mismatch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!