Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth. After full reduction is achieved, water vapor significantly enhances Ostwald ripening which in turn increases the likelihood of particle coalescence. This study proposes that water leads to formation of mobile nickel hydroxide species, leading to faster rates of particle growth during and after reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401009DOI Listing

Publication Analysis

Top Keywords

water vapor
12
influence water
8
reduction nickel
8
nickel phyllosilicate
8
particle growth
8
water
6
reduction
5
situ tem
4
tem study
4
study influence
4

Similar Publications

Interfacial solar evaporator generation (ISVG) is a new, cost-effective, and eco-friendly emerging method for water desalination. Two main criteria for evaluating ISVG performance are evaporation rate () and solar-to-vapor conversion efficiency (η). The main challenge of the previously presented models for the estimation of and η in 2D systems is that in most cases the calculated values are beyond the theoretical limits, > 1.

View Article and Find Full Text PDF

Effect of Ethanol Treatment and Calcination Temperature on Water Vapor Adsorption properties of MCM-41.

ACS Appl Mater Interfaces

December 2024

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Rd., Tianhe DistrictGuangzhou 510640, China.

MCM-41, a mesoporous material with a high surface area and tunable pore size, shows great potential for water vapor adsorption. However, due to its large pore size, the effective adsorption capacity at medium to low relative partial pressures is limited in adsorption chiller applications. In this work, MCM-41 was successfully synthesized at room temperature using cetyltrimethylammonium bromide (CTAB) as a templating agent.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Lignocellulosic waste, like corn stover (CS), is widely produced and serves as a key feedstock for biofuels and biochemicals. Semi-continuous subcritical water hydrolysis (SWH) is an eco-friendly method that breaks down cellulose and hemicellulose bonds. To boost fermentable sugar (FS) yields, steam explosion (SE) pretreatment was tested on CS, achieving a cellulose content of 74.

View Article and Find Full Text PDF

Extreme climate events, particularly droughts, pose significant threats to vegetation, severely impacting ecosystem functionality and resilience. However, the limited temporal resolution of current satellite data hinders accurate monitoring of vegetation's diurnal responses to these events. To address this challenge, we leveraged the advanced satellite ECOSTRESS, combining its high-resolution evapotranspiration (ET) data with a LightGBM model to generate the hourly continuous ECOSTRESS-based ET (HC-ET) for the middle and lower reaches of the Yangtze River Basin (YRB) from 2015 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!