Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility. Furthermore, the presence of the protospacer adjacent motif (PAM) motif (e.g., TTN or TTTN) in the target double-strand DNA (dsDNA) is an essential prerequisite for the activation of the Cas12-based method. This requirement imposes constraints on crRNA selection. To overcome such limitations, we have developed a novel PAM-free one-step asymmetric recombinase polymerase amplification (RPA) coupled with a CRISPR/Cas12b assay (OAR-CRISPR). This method innovatively merges asymmetric RPA, generating single-stranded DNA (ssDNA) amenable to CRISPR RNA binding without the limitations of the PAM site. Importantly, the single-strand cleavage by PAM-free crRNA does not interfere with the RPA amplification process, significantly reducing the overall detection times. The OAR-CRISPR assay demonstrates sensitivity comparable to that of qPCR but achieves results in a quarter of the time required by the latter method. Additionally, our OAR-CRISPR assay allows the naked-eye detection of as few as 60 copies/μL DNA within 8 min. This innovation marks the first integration of an asymmetric RPA into one-step CRISPR-based assays. These advancements not only support the progression of one-step CRISPR/Cas12-based detection but also open new avenues for the development of detection methods capable of targeting a wide range of DNA targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c05545 | DOI Listing |
ACS Sens
December 2024
School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China.
Anal Chim Acta
November 2023
AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Giefinggasse 4, 1210, Vienna, Austria.
As part of the ongoing evolution towards personalized anticancer therapy, mutation screening is becoming increasingly important and, therefore, also alternative detection strategies that allow for fast genetic diagnostics at the point of care. In the case of breast cancer, detecting cancer-associated point mutations in the PIK3CA gene is of particular importance for treatment decisions. We developed a recombinase polymerase amplification assay combined with an enzyme-linked electrochemical assay on multi-channel screen-printed gold sensors for specific and highly sensitive detection of three PIK3CA point mutations (H1047R, E545K, and E542K).
View Article and Find Full Text PDFAnal Chem
April 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility.
View Article and Find Full Text PDFACS Sens
December 2023
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
Experimentally, Cas12a can recognize multiple protospacer adjacent motif (PAM) sequences and is not restricted to the "TTTN". However, the application of the CRISPR/Cas12a system is still limited by the PAM for double-stranded DNA (dsDNA). Here, we developed asymmetric RPA (Asy-RPA) to completely break the limitations of PAM.
View Article and Find Full Text PDFAnal Chem
September 2023
INTERFIBIO Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!