Objectives: In the cement production industry, exposure to airborne particulate matter is associated with a decline in lung function and increased airway symptoms. Exposure to clinker-the major constituent of cement and supposedly the cause of the observed adverse health effects-was determined recently in 15 cement production plants located in 8 different countries (Estonia, Greece, Italy, Norway, Sweden, Switzerland, Spain, Turkey). It was shown that the median clinker abundance in the thoracic fraction varied between approximately 20% and 70% for individual plants. The present study complements the previous work by investigating the significance of job function as a determinant of clinker exposure.

Methods: The elemental composition (water and acid-soluble fractions separately) of 1,227 personal thoracic workplace samples was analyzed by positive matrix factorization (PMF) to determine the contribution of different sources to the composition of airborne particulate matter and to quantify the clinker content.

Results: Median thoracic mass air concentrations varied for individual job functions between 0.094 and 12 mg/m3 (estimated separately for different plants). The PMF 5-factor solution yielded median relative clinker abundances in the personal thoracic samples between 7.6% and 81% for individual job functions. Thoracic clinker air concentrations are highest for cleaning, production, and maintenance work, and lowest for administration and other work. Foremen and laboratory personnel show intermediate exposure levels. The plant was found to have a much higher contribution to the total variance of the thoracic clinker air concentrations than the job function. Thoracic clinker air concentrations (medians between 0.01 and 5.5 mg/m3) are strongly correlated with the thoracic mass air concentrations and to a lesser extent with the relative clinker abundance in an aerosol sample.

Conclusions: Job function is an important predictor of exposure to clinker in the cement production industry. As clinker is suspected to be the causal agent for the observed adverse health effects among cement production workers, the clinker air concentration may be a better exposure metric than thoracic air mass concentration despite the strong correlation between the two. Reduction strategies should focus on the most exposed job categories cleaning, production, and maintenance work.

Download full-text PDF

Source
http://dx.doi.org/10.1093/annweh/wxae022DOI Listing

Publication Analysis

Top Keywords

cement production
20
air concentrations
20
job function
16
clinker air
16
clinker
12
thoracic clinker
12
thoracic
9
function determinant
8
determinant clinker
8
production industry
8

Similar Publications

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Life cycle assessment and industrial synergy for carbon reduction: A circular economy approach.

Sci Total Environ

January 2025

Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.

In the face of the climate change crisis, circular economy (CE) is put forward as a promising key to the sustainable development goals (SDGs) riddle. In this context that affects developed and developing countries alike, circular initiatives arise, such is the case for Morocco where an industrial synergy based on the CE concept of 'waste is food' can be envisioned between the local phosphate and cement industries. In order to support and guide this initiative, a life cycle assessment (LCA) was conducted to compare the environmental performance of the production of ordinary Portland cement (OPC), limestone calcined clay cement (LC3) and a phosphate waste-based cement known as calcined marl cement (CMC).

View Article and Find Full Text PDF

Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.

Materials (Basel)

January 2025

Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.

To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.

View Article and Find Full Text PDF

Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM).

View Article and Find Full Text PDF

Comparative, Cost and Multi-Criteria Analyses of Traditional Binders in the Composition of Hemp-Based Finishing Products.

Materials (Basel)

January 2025

Department of Civil Engineering and Management, Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania.

The objective of this paper is to analyze the characteristics of twelve compositions based on hemp shiv and four traditional binders used in the construction industry: cement, plaster, hydrated lime and clay, with the aim of using the resulting materials as final finishing products applicable to the raw area of walls, slabs and other construction elements for walls. Comparative, cost and multi-criteria analyses were carried out on the proposed compositions. The comparative analysis focused on acoustic, thermal, mechanical and fire characteristics, followed by a cost analysis and ending with multi-criteria analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!