Red tourism is a distinctive form of tourism in China. Its network attention serves as a typical indicator to measure the level of promotion and publicity for red tourism, as well as an important reflection of its influence. Understanding the network structure of red tourism is of significant importance for optimizing the spatial pattern of tourism and promoting the development of the tourism industry. Based on this, this study takes the classic red tourism attractions in Shaanxi province, China as an example and constructs a multi-source data network attention evaluation index. Additionally, it employs social network theory to explore the network attention and tourist flow characteristics of the case study area. Research shows that: (1) Overall, the network attention to case-based destinations is relatively low, and there are significant differences in network attention among different attractions. Spatially, the distribution of network attention is uneven. This is manifested by higher network attention to attractions in Yan'an city and lower network attention to attractions in other regions. (2) There are differences in the network attention of different types of attractions. High-level attractions have a higher level of online attention, while low-level attractions have a lower level of network attention. Additionally, archaeological sites tend to receive a higher level of online attention. (3) The network density of tourist flow is low, and the tourism connections between nodes are not closely linked. The linkage between core nodes and edge nodes in tourism is poor. Developed tourism routes only exist in core nodes. (4) Nodes such as Zaoyuan revolution site, Yangjialing revolution site, and Wangjiaping revolution site have a significant influence in the network structure. In addition, the integration and development between red nodes and non-red nodes have been achieved. (5) There is a correlation between network attention and tourist flow, as well as a 'misplacement' feature. Based on the characteristics of attractions, they can be divided into four types: bright-star attractions, cash-cow attractions, thin-dog attractions, and question attractions. Based on the above conclusions, this study proposes targeted development recommendations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980247PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299286PLOS

Publication Analysis

Top Keywords

network attention
44
network
16
red tourism
16
attractions
13
attention
13
tourist flow
12
attention attractions
12
revolution site
12
tourism
10
classic red
8

Similar Publications

Systematic Review of Hybrid Vision Transformer Architectures for Radiological Image Analysis.

J Imaging Inform Med

January 2025

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.

Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction.

View Article and Find Full Text PDF

How the tulip breaking virus creates striped tulips.

Commun Biol

January 2025

Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.

The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century.

View Article and Find Full Text PDF

Aspect category sentiment analysis based on pre-trained BiLSTM and syntax-aware graph attention network.

Sci Rep

January 2025

Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081, China.

Aspect Category Sentiment Analysis (ACSA) is a fine-grained sentiment analysis task aimed at predicting the sentiment polarity associated with aspect categories within a sentence.Most existing ACSA methods are based on a given aspect category to locate sentiment words related to it. When irrelevant sentiment words have semantic meaning for the given aspect category, it may cause the problem that sentiment words cannot be matched with aspect categories.

View Article and Find Full Text PDF

Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems.

View Article and Find Full Text PDF

Multi scale multi attention network for blood vessel segmentation in fundus images.

Sci Rep

January 2025

Department of Data Science and Artificial Intelligence, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.

Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!