A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FTMMR: Fusion Transformer for Integrating Multiple Molecular Representations. | LitMetric

Molecular property prediction has gained substantial attention due to its potential for various bio-chemical applications. Numerous attempts have been made to enhance the performance by combining multiple molecular representations (1D, 2D, and 3D). However, most prior works only merged a limited number of representations or tried to embed multiple representations through a single network without using representation-specific networks. Furthermore, the heterogeneous characteristics of each representation made the fusion more challenging. Addressing these challenges, we introduce the Fusion Transformer for Multiple Molecular Representations (FTMMR) framework. Our strategy employs three distinct representation-specific networks and integrates information from each network using a fusion transformer architecture to generate fused representations. Additionally, we use self-supervised learning methods to align heterogeneous representations and to effectively utilize the limited chemical data available. In particular, we adopt a combinatorial loss function to leverage the contrastive loss for all three representations. We evaluate the performance of FTMMR using seven benchmark datasets, demonstrating that our framework outperforms existing fusion and self-supervised methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3383221DOI Listing

Publication Analysis

Top Keywords

fusion transformer
12
multiple molecular
12
molecular representations
12
representations
8
representation-specific networks
8
ftmmr fusion
4
transformer integrating
4
multiple
4
integrating multiple
4
molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!