Engraving Polyamide Layers by Self-Etchable CaCO Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes.

Environ Sci Technol

Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China.

Published: April 2024

AI Article Synopsis

  • * A common method to create these nanovoids involves adding sacrificial nanofillers, but traditional post-etching processes can damage membrane integrity.
  • * This study introduces self-etchable nanofillers (nCaCO) that react during the polymerization process, leaving behind beneficial voids without harming membrane structure, resulting in better antifouling properties and improved rejection rates for contaminants like boron and arsenic.

Article Abstract

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO nanoparticles (nCaCO) were used as the model nanofillers, which can be etched by reacting with H to leave void nanostructures behind. This reaction can further degas CO nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c00164DOI Listing

Publication Analysis

Top Keywords

polyamide layer
16
caco nanoparticles
8
reverse osmosis
8
osmosis membranes
8
nanovoids polyamide
8
sacrificial nanofillers
8
membrane performance
8
performance
5
polyamide
5
membrane
5

Similar Publications

Thermal and sound insulation play a vital role in today's world, and nonwoven composite structures including microfiber layers provide efficient solutions for addressing these demands. In this study, the sound and thermal insulation properties of nonwoven composite structures, including single-layer meltblown, multilayer meltblown, hydroentangled, and nanofiber nonwoven inner layers, were compared statistically by using Design Expert 13 software. The inner layer type and outer layer type of the composite structures were considered as independent variables, and thickness, bulk density, air permeability, sound absorption coefficient, and thermal resistance of composite structures were evaluated as dependent variables during statistical analyses.

View Article and Find Full Text PDF

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Nanofiltration (NF) membranes offer tremendous potential in wastewater reuse, desalination, and resource recovery to alleviate water scarcity and environmental contamination. However, separating micropollutants and charged ions from wastewater while maintaining high water permeation remains challenging for conventional NF membranes. Customizing diffusion and interaction behavior of monomers at membrane-forming interfaces is promising for regulating interior pore structures and surface morphology properties for polyamide NF membranes, reaching efficient screening and retaining of solutes from water.

View Article and Find Full Text PDF

Influence of Raster Orientation and Feeding Rate on the Mechanical Properties of Short Carbon Fiber-Reinforced Polyamide Printed by Fused-Filament Fabrication.

3D Print Addit Manuf

December 2024

Institute of Materials Science, Joining and Forming (IMAT), BMK Endowed Professorship for Aviation, Graz University of Technology, Graz, Austria.

Article Synopsis
  • Fused-filament fabrication (FFF) is an affordable and easy-to-use additive manufacturing method with numerous materials, but it involves many overlooked process variables.
  • This study focuses on less-studied variables like raster orientation angles and feeding rates to evaluate their effects on the mechanical properties of short carbon fiber-reinforced polyamide made by FFF.
  • The results showed that a combination of stacking layers at 0°/90° and +30°/-30° provides optimal tensile and flexural strengths, while increasing the flow rate did not enhance part density or mechanical properties.
View Article and Find Full Text PDF

Developing eco-friendly and effective flame retardants is crucial for enhancing the fire resistance of polymeric materials. This study developed a novel nitrogen‑phosphorus (NP) synergistic nanocellulose-based flame retardant (CNC-PEI-PA) by grafting polyethyleneimine (PEI) and phytic acid (PA) onto the CNC. CNC-PEI-PA demonstrated remarkable thermal stability, char-forming ability, and antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!