The search for ecofriendly products to reduce crop dependence on synthetic chemical fertilizers presents a new challenge. The present study aims to isolate and select efficient native PGPB that can reduce reliance on synthetic NPK fertilizers. A total of 41 bacteria were isolated from the sediment and roots of mangrove trees () and assessed for their PGP traits under conditions. Of them, only two compatible strains of ecies were selected to be used individually and in a mix to promote tomato seedling growth. The efficiency of three inoculants applied to the soil was assessed in a pot experiment at varying rates of synthetic NPK fertilization (0, 50, and 100% NPK). The experiment was set up in a completely randomized design with three replications. Results showed that the different inoculants significantly increased almost all the studied parameters. However, their effectiveness is strongly linked to the applied rate of synthetic fertilization. Applying bacterial inoculant with only 50% NPK significantly increased the plant height (44-51%), digital biomass (60-86%), leaf area (77-87%), greenness average (29-36%), normalized difference vegetation index (29%), shoot dry weight (82-92%) and root dry weight (160-205%) compared to control plants. Concerning the photosynthetic activity, this treatment showed a positive impact on the concentrations of chlorophyll a (25-31%), chlorophyll b (34-39%), and carotenoid (45-49%). Interestingly, these increases ensured the highest values significantly similar to or higher than those of control plants given 100% NPK. Furthermore, the highest accumulation of N, P, K, Cu, Fe, Zn, and Ca in tomato shoots was recorded in plants inoculated with the bacterial mix at 50% NPK. It was proven for the first time that the native PGP bacteria derived from mangrove plant species positively affects the quality of tomato seedlings while reducing 50% NPK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973150PMC
http://dx.doi.org/10.3389/fpls.2024.1356545DOI Listing

Publication Analysis

Top Keywords

50% npk
12
tomato seedling
8
seedling growth
8
npk
8
npk fertilization
8
synthetic npk
8
100% npk
8
dry weight
8
control plants
8
optimizing tomato
4

Similar Publications

Article Synopsis
  • Organic fertilizers are more environmentally friendly than chemical ones and can enhance sustainable farming, particularly when used with PGPRs (Plant Growth-Promoting Rhizobacteria) to improve canola yield and soil health.
  • The study conducted over two years tested various combinations of PGPRs and fertilizers (including biochar and compost) using a systematic field design to assess their effects on canola productivity.
  • Results showed that using Bacillus subtilis with the recommended NPK fertilizer or biochar significantly improved canola yields and quality, suggesting these practices are beneficial for both crop productivity and environmental sustainability.
View Article and Find Full Text PDF

Designing sustainable soil conditioners: Nanocomposite-based thermoplastic starch for enhanced soil health and crop performance.

Int J Biol Macromol

January 2025

Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil. Electronic address:

The growing demand for sustainable solutions in agriculture, driven by global population growth and increasing soil degradation, has intensified the search for sustainable soil conditioners. This study investigated the impact of adding nanoclay (NC) and nano lignin (NL) to thermoplastic starch (TPS) on its physical, chemical, and thermal properties, its effectiveness as a soil conditioner, and its resistance to UV-C degradation. TPS nanocomposites were prepared with varying NC (3 %, 5 %, 7 %) and NL (0.

View Article and Find Full Text PDF

In the face of declining crop yields, inefficient fertilizer usage, nutrient depletion, and limited water availability, the efficiency of conventional NPK fertilizers is a critical issue in India. The hypothesis of this study posits that nano-nitrogen could enhance growth and photosynthetic efficiency in crop plants compared to conventional fertilizers. For this, a randomized block design (RBD) field experiment was conducted with six treatments: no nitrogen (T1), 100% N through urea (T2), and varying levels of N replacement with nano-nitrogen (33%: T3; 50%: T4; 66%: T5; and 100%: T6).

View Article and Find Full Text PDF

Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.

View Article and Find Full Text PDF

Medicinal and aromatic plant (MAP) production is gaining popularity for industrial agriculture, with phytochemical compounds having a significant impact on human health. Plant fertilization must be carefully considered as it is strongly affecting the biochemical profile of MAPs. The present study examined the responses to different nitrogen (N: 75, 150, and 300 mg/L), potassium (K: 150, 350, and 550 mg/L), and phosphorus (P: 50, 75, and 100 mg/L) concentration in the nutrient solution (NS) in hydroponics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!