Neonicotinoid insecticides, the fastest-growing class in recent decades, interfere with cholinergic neurotransmission by binding to the nicotinic acetylcholine receptor. This disruption affects both targeted and non-targeted insects, impairing cognitive functions such as olfaction and related behaviors, with a particular emphasis on olfactory memory due to its ecological impact. Despite the persistent presence of these chemicals in the environment, significant research gaps remain in understanding the intricate interplay between cognitive function, development, neuronal activity, and neonicotinoid-induced toxicity. This study focuses on the fruit fly , chosen for its genetic tractability, well-characterized neural circuitry, and remarkable parallels with bees in neurotransmitter systems and brain structures. Our aim is to establish the fruit fly as a valuable model organism for studying the effects of neonicotinoids on behavior and neuronal circuitry, with particular attention to olfactory memory and associated brain circuitries. To achieve this aim, we conducted experiments to investigate the effects of short-term exposure to sublethal doses of the neonicotinoid imidacloprid, mimicking realistic environmental insecticide exposure, on the formation of odor memories. Additionally, we evaluated synaptic contacts and cholinergic neurotransmission within the mushroom body, the primary memory network of insects. Our results showed significant impairments in odor memory formation in flies exposed to imidacloprid, with exposure during the adult stage showing more pronounced effects than exposure during the larval stage. Additionally, functional studies revealed a decrease in synaptic contacts within the intrinsic olfactory projection neurons and the mushroom body. Furthermore, another experiment showed an odor-dependent reduction in cholinergic neurotransmission within this network. In summary, employing as a model organism provides a robust framework for investigating neonicotinoid effects and understanding their diverse impacts on insect physiology and behavior. Our study initiates the establishment of the fruit fly as a pivotal model for exploring neonicotinoid influences, shedding light on their effects on olfactory memory, neuronal integrity, and synaptic transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973132PMC
http://dx.doi.org/10.3389/fphys.2024.1363943DOI Listing

Publication Analysis

Top Keywords

olfactory memory
16
cholinergic neurotransmission
12
fruit fly
12
exploring neonicotinoid
8
neonicotinoid effects
8
model organism
8
synaptic contacts
8
mushroom body
8
effects
6
memory
6

Similar Publications

Fine social discrimination of siblings in mice: Implications for early detection of Alzheimer's disease.

Neurobiol Dis

January 2025

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France. Electronic address:

The ability to distinguish between individuals is crucial for social species and supports behaviors such as reproduction, hierarchy formation, and cooperation. In rodents, social discrimination relies on memory and the recognition of individual-specific cues, known as "individual signatures". While olfactory signals are central, other sensory cues - such as auditory, visual, and tactile inputs - also play a role.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

Novel Perspectives for Sensory Analysis Applied to Piperaceae and Aromatic Herbs: A Pilot Study.

Foods

January 2025

Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.

Spices and aromatic herbs are important components of everyday nutrition in several countries and cultures, thanks to their capability to enhance the flavor of many dishes and convey significant emotional contributions by themselves. Indeed, spices as well as aromatic herbs are to be considered not only for their important values of antimicrobial agents or flavor enhancers everybody knows, but also, thanks to their olfactory and gustatory spectrum, as drivers to stimulate the consumers' memories and, in a stronger way, emotions. Considering these unique characteristics, spices and aromatic herbs have caught the attention of consumer scientists and experts in sensory analysis for their evaluation using semi-quantitative approaches, with interesting evidence.

View Article and Find Full Text PDF

MO-GCN: A multi-omics graph convolutional network for discriminative analysis of schizophrenia.

Brain Res Bull

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China; Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:

The methodology of machine learning with multi-omics data has been widely adopted in the discriminative analyses of schizophrenia, but most of these studies ignored the cooperative interactions and topological attributes of multi-omics networks. In this study, we constructed three types of brain graphs (BGs), three types of gut graphs (GGs), and nine types of brain-gut combined graphs (BGCGs) for each individual. We proposed a novel methodology of multi-omics graph convolutional network (MO-GCN) with an attention mechanism to construct a classification model by integrating all BGCGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!