Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ASCOT (an acronym derived from Ag-Silver, Copper Oxide, Titanium Oxide) is a user-friendly web tool for digital construction of electrically neutral, energy-minimized spherical nanoparticles (NPs) of Ag, CuO, and TiO (both Anatase and Rutile forms) in vacuum, integrated into the Enalos Cloud Platform (https://www.enaloscloud.novamechanics.com/sabydoma/ascot/). ASCOT calculates critical atomistic descriptors such as average potential energy per atom, average coordination number, common neighbour parameter (used for structural classification in simulations of crystalline phases), and hexatic order parameter (which measures how closely the local environment around a particle resembles perfect hexatic symmetry) for both core (over 4 Å from the surface) and shell (within 4 Å of the surface) regions of the NPs. These atomistic descriptors assist in predicting the most stable NP size based on lowest per atom energy and serve as inputs for developing machine learning models to predict the toxicity of these nanomaterials. ASCOT's automated backend requires minimal user input in order to construct the digital NPs: inputs needed are the material type (Ag, CuO, TiO-Anatase, TiO-Rutile), target diameter, a Force-Field from a pre-validated list, and the energy minimization parameters, with the tool providing a set of default values for novice users.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973535 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.03.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!