Objective: To evaluate the value of a machine learning model using enhanced CT radiomics features in the prediction of lymphovascular invasion (LVI) of esophageal squamous cell carcinoma (ESCC) before treatment.

Methods: We reviewed and analyzed the enhanced CT images of 258 ESCC patients from June 2017 to December 2019. We randomly assigned the patients in a ratio of 7:3 to a training set (182 cases) and a validation (76 cases) set. Clinical risk factors and CT image characteristics were recorded, and multifactor logistic regression was used to screen independent risk factors of LVI of ESCC patients. We extracted the CT radiomics features using the FAE software and screened radiomics features using maximum relevance and minimum redundancy (MRMR) and least absolute shrinkage and selection operator (LASSO) algorithms, and finally, the radiomics labels of each patient were established. Five machine learning algorithms, namely, support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), Gauss naive Bayes (GNB), and multilayer perceptron (MLP), were used to construct the model of radiomics labels, and its clinical features were screened. The predictive efficacy of the machine learning model for LVI of ESCC was evaluated using the receiver operating characteristic (ROC) curve.

Results: Tumor thickness [OR = 1.189, 95% confidence interval (CI) 1.060-1.351, = 0.005], tumor-to-normal wall enhancement ratio (TNR) (OR = 2.966, 95% CI 1.174-7.894, = 0.024), and clinical N stage (OR = 5.828, 95% CI 1.752-20.811,  = 0.005) were determined as independent risk factors of LVI. We extracted 1,316 features from preoperative enhanced CT images and selected 14 radiomics features using MRMR and LASSO to construct the radiomics labels. In the test set, SVM, KNN, LR, and GNB showed high predictive performance, while the MLP model had poor performance. In the training set, the area under the curve (AUC) values were 0.945 and 0.905 in the KNN and SVM models, but these decreased to 0.866 and 0.867 in the validation set, indicating significant overfitting. The GNB and LR models had AUC values of 0.905 and 0.911 in the training set and 0.900 and 0.893 in the validation set, with stable performance and good fitting and predictive ability. The MLP model had AUC values of 0.658 and 0.674 in the training and validation sets, indicating poor performance. A multiscale combined model constructed using multivariate logistic regression has an AUC of 0.911 (0.870-0.951) and 0.893 (0.840-0.962), accuracy of 84.4% and 79.7%, sensitivity of 90.8% and 87.1%, and specificity of 80.5% and 79.0% in the training and validation sets, respectively.

Conclusion: Machine learning models can preoperatively predict the condition of LVI effectively in patients with ESCC based on enhanced CT radiomics features. The GNB and LR models exhibit good stability and may bring a new way for the non-invasive prediction of LVI condition in ESCC patients before treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977099PMC
http://dx.doi.org/10.3389/fonc.2024.1308317DOI Listing

Publication Analysis

Top Keywords

machine learning
20
radiomics features
20
learning model
12
enhanced radiomics
12
escc patients
12
training set
12
risk factors
12
logistic regression
12
radiomics labels
12
auc values
12

Similar Publications

Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking.

J Chem Theory Comput

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Virtual screening: hope, hype, and the fine line in between.

Expert Opin Drug Discov

January 2025

Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.

Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.

View Article and Find Full Text PDF

Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.

View Article and Find Full Text PDF

Background: Medical Humanities (MH) curricula integrate humanities disciplines into medical education to nurture essential qualities in future physicians. However, the impact of MH on clinical competencies during formative training phases remains underexplored. This study aimed to determine the influence of MH curricula on internship performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!