The pathogenesis and progression of follicular lymphoma (FL) depends on immune evasion mechanisms. The gut microbiota has been reported to be associated with the development and outcome of several human diseases by modulating host immunity. Thus, the present study investigated the characteristics and prognostic value of the gut microbiota in FL. Fecal samples from treatment-naïve patients with FL (n=28) and healthy controls (n=18) were prospectively collected. The gut microbiota diversity and composition were examined by 16S ribosomal RNA sequencing. The results demonstrated that patients with FL had distinct microbiota compositions. The relative abundance of the family was significantly increased in patients with FL (P=0.01). Furthermore, a high level of was identified as a strong indicator of tumor burden (P=0.001), and was related to the FL International Prognostic Index score and serum lactate dehydrogenase levels. The present results indicated an association between the gut microbiota and FL prognosis. Findings from the present study may provide a rational foundation for further investigation of the role of gut microbiota in lymphoma management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973929 | PMC |
http://dx.doi.org/10.3892/ol.2024.14340 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.
The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.
View Article and Find Full Text PDFFront Allergy
January 2025
Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy.
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.
Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).
Front Immunol
January 2025
Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.
View Article and Find Full Text PDFFront Immunol
January 2025
Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China.
Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!