Leukemia is a malignant clonal disease of hematopoietic stem cells, which accounts for about 3% of the total incidence of tumors and is particularly prevalent among children and adolescents. It mainly includes four types of leukemia, namely ALL, AML, CLL, and CML, which are often aggressive and challenging diseases to treat. Several signaling pathways are dysregulated in almost all types of leukemia, such as JAK, PI3K, and MAPK, and others are dysregulated in specific types of leukemia, like Wnt/β-catenin, Hedgehog, FLT3, Bcr-Abl, and so on. Many efforts have been devoted to developing small molecule inhibitors targeting protein kinases involved in leukemia-related signaling pathways. In this review, we focus on the study of signaling pathways and protein kinases that developed as targets of anti-leukemia drug therapy and report the research progress of relevant small molecule kinase inhibitors over the last five years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0109298673267738231129104216 | DOI Listing |
Cancer Cell Int
December 2024
Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Taiwan.
Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Bisphenol F (BPF) is an environmental endocrine disruptor capable of crossing the placental barrier and affecting the growth and development of offspring. Despite its potential impact, systematic research about effects of BPF on the reproductive function of male offspring remains limited. In this study, pregnant female mice were exposed to BPF at doses of 40, 400, and 4000 μg/kg during gestation and lactation, respectively, to evaluate its impact on testicular damage, testosterone levels, and spermatogenesis of male offspring (F1 generation), and further explore the mechanisms using transcriptomics.
View Article and Find Full Text PDFCell Signal
December 2024
Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:
Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.
View Article and Find Full Text PDFCell Signal
December 2024
Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China. Electronic address:
Objective: Polycystic ovary syndrome (PCOS) is a metabolic and endocrine disease that entails dysregulated ovulation, hyperandrogenism, and polycystic ovaries. While Wnt5a has been suggested to play key roles in follicular development and female fertility under normal conditions, its functions in the context of PCOS have yet to be established. This study was thus designed to explore the impact of Wnt5a on ovarian granulosa cell autophagy in PCOS, providing in vitro evidence in support of its role in this setting.
View Article and Find Full Text PDFProg Biophys Mol Biol
December 2024
Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China. Electronic address:
N-methyladenosine (mA) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The mA modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of mA modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!