Visual linguistic statistical learning is traceable through neural entrainment.

Psychophysiology

Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.

Published: August 2024

The human brain can detect statistical regularities in the environment across a wide variety of contexts. The importance of this process is well-established not just in language acquisition but across different modalities; in addition, several neural correlates of statistical learning have been identified. A current technique for tracking the emergence of regularity learning and localizing its neural background is frequency tagging (FT). FT can detect neural entrainment not only to the frequency of stimulus presentation but also to that of a hidden structure. Auditory learning paradigms with linguistic and nonlinguistic stimuli, along with a visual paradigm using nonlinguistic stimuli, have already been tested with FT. To complete the picture, we conducted an FT experiment using written syllables as stimuli and a hidden triplet structure. Both behavioral and neural entrainment data showed evidence of structure learning. In addition, we localized two electrode clusters related to the process, which spread across the frontal and parieto-occipital areas, similar to previous findings. Accordingly, we conclude that fast-paced visual linguistic regularities can be acquired and are traceable through neural entrainment. In comparison with the literature, our findings support the view that statistical learning involves a domain-general network.

Download full-text PDF

Source
http://dx.doi.org/10.1111/psyp.14575DOI Listing

Publication Analysis

Top Keywords

neural entrainment
16
statistical learning
12
visual linguistic
8
traceable neural
8
nonlinguistic stimuli
8
learning
6
neural
6
statistical
4
linguistic statistical
4
learning traceable
4

Similar Publications

Background: The human sensorimotor system can naturally synchronize with environmental rhythms, such as light pulses or sound beats. Several studies showed that different styles and tempos of music, or other rhythmic stimuli, have an impact on physiological rhythms, including electrocortical brain activity, heart rate, and motor coordination. Such synchronization, also known as the "entrainment effect", has been identified as a crucial mechanism impacting cognitive, motor, and affective functioning.

View Article and Find Full Text PDF

Attention deficit/hyperactive disorder is increasing in prevalence among children all over the world which affects the children's communication, learning, and behavior, which in turn affects the quality of life. The depolarization of neurons is modulated by neural stimulation which triggers activity-based mechanisms of neuroplasticity. An external periodic stimulus that can modify the oscillations of the brain through synchronization is called entrainment.

View Article and Find Full Text PDF

Neurobiological mechanism of music improving gait disorder in patients with Parkinson's disease: a mini review.

Front Neurol

January 2025

Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.

Walking ability is essential for human survival and health. Its basic rhythm is mainly generated by the central pattern generator of the spinal cord. The rhythmic stimulation of music to the auditory center affects the cerebral cortex and other higher nerve centers, and acts on the central pattern generator.

View Article and Find Full Text PDF

Subthalamic nucleus deep brain stimulation in the beta frequency range boosts cortical beta oscillations and slows down movement.

J Neurosci

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany

Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!