The role of shear rates on amyloid formation from biofilm peptide phenol-soluble modulins.

Biophys J

Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana. Electronic address:

Published: May 2024

Biofilms, microbial communities enclosed in the self-produced extracellular matrix, have a significant impact on human health, environment, and industry. The pathogen Staphylococcus aureus (S. aureus) is recognized as one of the most frequent causes of biofilm-related infections. Phenol-soluble modulins (PSMs) serve as a crucial component, fortifying S. aureus biofilm matrix through self-assembly into amyloid fibrils, which enhances S. aureus colonization and resistance to antibiotics. However, the role of shear rate, one of the critical physiological factors within blood vessels, on the formation of PSM amyloids remains poorly understood. In this work, using a combination of thioflavin T fluorescence kinetic studies, circular dichroism spectrometry, and electron microscopy, we demonstrated that shear rates ranging from 150 to 300 s accelerate fibrillation of PSMα1, α3, and α4 into amyloids, resulting in elongated amyloid structures. Furthermore, PSMα1, α3, and α4 predominantly self-assembled into amyloid fibers with a cross-α structure under shear conditions, deviating from the typical β-sheet configuration of PSM amyloids. These findings imply the role of shear rates within the bloodstream on enhancing PSM self-assembly that is associated with S. aureus biofilm formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079943PMC
http://dx.doi.org/10.1016/j.bpj.2024.03.036DOI Listing

Publication Analysis

Top Keywords

role shear
12
shear rates
12
phenol-soluble modulins
8
s aureus biofilm
8
psm amyloids
8
psmα1 α3
8
α3 α4
8
amyloid
4
rates amyloid
4
amyloid formation
4

Similar Publications

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.

View Article and Find Full Text PDF

This paper investigates the effects of particle morphology (PM) and particle size distribution (PSD) on the micro-macro mechanical behaviours of granular soils through a novel X-ray micro-computed tomography (μCT)-based discrete element method (DEM) technique. This technique contains the grain-scale property extraction by the X-ray μCT, DEM parameter calibration by the one-to-one mapping technique, and the massive derivative DEM simulations. In total, 25 DEM samples were generated with a consideration of six PSDs and four PMs.

View Article and Find Full Text PDF

Comparative Study on Hyperelastic Constitutive Models for the Static and Dynamic Behavior of Resilient Mounts.

Materials (Basel)

January 2025

School of Electrical & Control Engineering, Tongmyong University, Busan 48520, Republic of Korea.

Resilient mounts play a vital role in anti-vibration and shock-absorption systems, making precise estimation of their static and dynamic stiffness essential for ensuring optimal mechanical performance and effective design. This study investigates the behavior of resilient mounts by analyzing their static and dynamic stiffness characteristics through the application of various hyperelastic constitutive models. Seven hyperelastic models were reviewed and systematically compared using numerical simulations, experimental data, and analytical solutions.

View Article and Find Full Text PDF

Performance Responses and Fillet Quality of Rainbow Trout () to Increasing Addition Levels of Dietary Supplementation of Guanidinoacetic Acid.

Animals (Basel)

January 2025

Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, Department of Agrobiotechnology, BOKU University, 1190 Vienna, Austria.

Guanidinoacetic acid (GAA) plays an important role in cellular energy use and protein synthesis. The objectives of this study were to determine the optimal level of dietary GAA regarding the growth performance and fillet characteristics of rainbow trout (). A total of 300 trout (initial weight, 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!