A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Road surface crack detection based on improved YOLOv5s. | LitMetric

In response to the issues of low efficiency and high cost in traditional manual methods for road surface crack detection, an improved YOLOv5s (you only look once version 5 small) algorithm was proposed. Based on this improvement, a road surface crack object recognition model was established using YOLOv5s. First, based on the Res2Net (a new multi-scale backbone architecture) network, an improved multi-scale Res2-C3 (a new multi-scale backbone architecture of C3) module was suggested to enhance feature extraction performance. Second, the feature fusion network and backbone of YOLOv5 were merged with the GAM (global attention mechanism) attention mechanism, reducing information dispersion and enhancing the interaction of global dimensions features. We incorporated dynamic snake convolution into the feature fusion network section to enhance the model's ability to handle irregular shapes and deformation problems. Experimental results showed that the final revision of the model dramatically increased both the detection speed and the accuracy of road surface identification. The mean average precision (mAP) reached 93.9%, with an average precision improvement of 12.6% compared to the YOLOv5s model. The frames per second (FPS) value was 49.97. The difficulties of low accuracy and slow speed in road surface fracture identification were effectively addressed by the modified model, demonstrating that the enhanced model achieved relatively high accuracy while maintaining inference speed.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2024188DOI Listing

Publication Analysis

Top Keywords

road surface
20
surface crack
12
crack detection
8
improved yolov5s
8
multi-scale backbone
8
backbone architecture
8
feature fusion
8
fusion network
8
attention mechanism
8
average precision
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!