A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data governance and Gensini score automatic calculation for coronary angiography with deep-learning-based natural language extraction. | LitMetric

With the widespread adoption of electronic health records, the amount of stored medical data has been increasing. Clinical data, often in the form of semi-structured or unstructured electronic medical records (EMRs), contains rich patient information. However, due to the use of natural language by physicians when composing these records, the effectiveness of traditional methods such as dictionaries, rule matching, and machine learning in the extraction of information from these unstructured texts falls short of clinical standards. In this paper, a novel deep-learning-based natural language extraction method is proposed to overcome current shortcomings in data governance and Gensini score automatic calculation in coronary angiography. A pre-trained model called bidirectional encoder representation from transformers (BERT) with strong text feature representation capabilities is employed as the feature representation layer. It is combined with bidirectional long short-term memory (BiLSTM) and conditional random field (CRF) models to extract both global and local features from the text. The study included an evaluation of the model on a dataset from a hospital in China and it was compared with another model to validate its practical advantages. Hence, the BiLSTM-CRF model was employed to automatically extract relevant coronary angiogram information from EMR texts. The achieved F1 score was 91.19, which is approximately 0.87 higher than the BERT-BiLSTM-CRF model.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2024180DOI Listing

Publication Analysis

Top Keywords

natural language
12
data governance
8
governance gensini
8
gensini score
8
score automatic
8
automatic calculation
8
calculation coronary
8
coronary angiography
8
deep-learning-based natural
8
language extraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!