Inbreeding depression is of major concern in declining populations, but relatively little is known about its genetic architecture in wild populations, such as the degree to which it is composed of large or small effect loci and their distribution throughout the genome. Here, we combine fitness and genomic data from a wild population of red deer to investigate the genomic distribution of inbreeding effects. Based on the runs of homozygosity (ROH)-based inbreeding coefficient, F, we use chromosome-specific inbreeding coefficients (F) to explore whether the effect of inbreeding varies between chromosomes. Under the assumption that within an individual the probability of being identical-by-descent is equal across all chromosomes, we used a multi-membership model to estimate the deviation of F from the average inbreeding effect. This novel approach ensures effect sizes are not overestimated whilst maximising the power of our available dataset of >3000 individuals genotyped on >35,000 autosomal SNPs. We find that most chromosomes confer a minor reduction in fitness-related traits, which when these effects are summed, results in the observed inbreeding depression in birth weight, survival and lifetime breeding success. However, no chromosomes had a significant detrimental effect compared to the overall effect of inbreeding, indicating no major effect loci. We conclude that in this population, inbreeding depression is likely the result of multiple mildly or moderately deleterious mutations spread across all chromosomes, which are difficult to detect with statistical confidence. Such mutations will be inefficiently purged, which may explain the persistence of inbreeding depression in this population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.17335 | DOI Listing |
Ecol Evol
January 2025
Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology University of Pretoria Pretoria South Africa.
The reduced cost of next-generation sequencing (NGS) has allowed researchers to generate nuclear and mitochondrial genome data to gain deeper insights into the phylogeography, evolutionary history and biology of non-model species. While the Cape buffalo () has been well-studied across its range with traditional genetic markers over the last 25 years, researchers are building on this knowledge by generating whole genome, population-level data sets to improve understanding of the genetic composition and evolutionary history of the species. Using publicly available NGS data, we assembled 40 Cape buffalo mitochondrial genomes (mitogenomes) from four protected areas in South Africa, expanding the geographical range and almost doubling the number of mitogenomes available for this species.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Biology, Duke University, P.O. Box 90338, Durham, NC 27708-0338, USA.
Background/objectives: Systems of reproduction differ with respect to the magnitude of neutral genetic diversity maintained in a population. In particular, the partitioning of reproductive organisms into mating types and regular inbreeding have long been recognized as key factors that influence effective population number. Here, a range of reproductive systems are compared with respect to the maintenance of neutral genetic diversity.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Background: Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression.
Results: Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits.
Physiol Mol Biol Plants
December 2024
ICAR-Central Potato Research Institute, Bemloi, Shimla, Himachal Pradesh 171001 India.
Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!