A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of a centrifugal blood pump designed using an industrial method through experimental and numerical study. | LitMetric

With improved treatment of coronary artery disease, more patients are surviving until heart failure occurs. This leads to an increase in patients needing devices for struggling with heart failure. Ventricular assist devices are known as the mainstay of these devices. This study aimed to design a centrifugal pump as a ventricular assist device. In order to design the pump, firstly, the geometrical parameters of the pump, including the gap distance, blade height, and position of the outlet relative to the blade, were investigated. Finally, the selected configuration, which had all the appropriate characteristics, both hydraulically and physiologically, was used for the rest of the study. The study of the blade, as the main component in energy transfer to the blood, in a centrifugal pump, has been considered in the present study. In this regard, the point-to-point design method, which is used in industrial applications, was implemented. The designer chooses the relationship between the blade angles at each radius in the point-to-point method. The present study selected logarithmic and second-order relations for designing the blade's profile. In total, 58 blades were examined in this study, which differed regarding blade inlet and outlet angles and the relationship between angle and radial position. ANSYS CFX 17.0 software was utilized to simulate blades' performances, and a benchmark pump provided by the US Food and Drug Administration (FDA) was used to validate the numerical simulations. Then, the selected impeller from the numerical investigation was manufactured, and its performance was compared experimentally with the FDA benchmark pump. A hydraulic test rig was also developed for experimental studies. The results showed that among the blades designed in this study, the blade with an input angle of 45° and an output angle of 55°, which is designed to implement a logarithmic relationship, has the best performance. The selected impeller configuration can increase the total head (at least by 20%) at different flow rates compared to the FDA pump.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350071PMC
http://dx.doi.org/10.1038/s41598-024-57019-9DOI Listing

Publication Analysis

Top Keywords

pump
8
study
8
heart failure
8
ventricular assist
8
centrifugal pump
8
study blade
8
benchmark pump
8
selected impeller
8
blade
6
optimization centrifugal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!