AI Article Synopsis

  • A study analyzed the microbiota-gut-brain axis in 164 participants, comparing 83 nonagenarians (NAs) with 81 non-nonagenarians (NNAs) and their family members.
  • Significant differences in 438 metabolites were found, with NAs showing higher levels of neuroactive compounds and anti-inflammatory substances.
  • The results suggest that specific gut microbes and metabolites in NAs are linked to improved brain connectivity and cognitive preservation, highlighting the potential benefits of microbiome balance for longevity and cognitive health.

Article Abstract

The role of microbiota-gut-brain axis in modulating longevity remains undetermined. Here, we performed a multiomics analysis of gut metagenomics, gut metabolomics, and brain functional near-infrared spectroscopy (fNIRS) in a cohort of 164 participants, including 83 nonagenarians (NAs) and 81 non-nonagenarians (NNAs) matched with their spouses and offspring. We found that 438 metabolites were significantly different between the two groups; among them, neuroactive compounds and anti-inflammatory substances were enriched in NAs. In addition, increased levels of neuroactive metabolites in NAs were significantly associated with NA-enriched species that had three corresponding biosynthetic potentials: , and . Further analysis showed that the altered gut microbes and metabolites were linked to the enhanced brain connectivity in NAs, including the left dorsolateral prefrontal cortex (DLPFC)-left premotor cortex (PMC), left DLPFC-right primary motor area (M1), and right inferior frontal gyrus (IFG)-right M1. Finally, we found that neuroactive metabolites, altered microbe and enhanced brain connectivity contributed to the cognitive preservation in NAs. Our findings provide a comprehensive understanding of the microbiota-gut-brain axis in a long-lived population and insights into the establishment of a microbiome and metabolite homeostasis that can benefit human longevity and cognition by enhancing functional brain connectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984123PMC
http://dx.doi.org/10.1080/19490976.2024.2331434DOI Listing

Publication Analysis

Top Keywords

brain connectivity
12
analysis gut
8
microbiota-gut-brain axis
8
neuroactive metabolites
8
enhanced brain
8
brain
5
nas
5
integrated analysis
4
gut
4
gut metabolome
4

Similar Publications

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

Individual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks.

View Article and Find Full Text PDF

Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.

View Article and Find Full Text PDF

Computational Generation of Long-range Axonal Morphologies.

Neuroinformatics

January 2025

Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland.

Long-range axons are fundamental to brain connectivity and functional organization, enabling communication between different brain regions. Recent advances in experimental techniques have yielded a substantial number of whole-brain axonal reconstructions. While previous computational generative models of neurons have predominantly focused on dendrites, generating realistic axonal morphologies is more challenging due to their distinct targeting.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) in psychiatric disorders in early childhood (aged under 10 years): a systematic review.

Eur Child Adolesc Psychiatry

January 2025

Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany.

Transcranial direct current stimulation (tDCS) remains experimental for many psychiatric disorders in adults. Particularly in childhood, there is limited research on the evidence for the efficacy and mechanisms of action of tDCS on the developing brain. The objective of this review is to identify published experimental studies to examine the efficacy and mechanisms of tDCS in children with psychiatric or developmental disorders in early (prepubertal) childhood (aged under 10 years).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!