The role of microbiota-gut-brain axis in modulating longevity remains undetermined. Here, we performed a multiomics analysis of gut metagenomics, gut metabolomics, and brain functional near-infrared spectroscopy (fNIRS) in a cohort of 164 participants, including 83 nonagenarians (NAs) and 81 non-nonagenarians (NNAs) matched with their spouses and offspring. We found that 438 metabolites were significantly different between the two groups; among them, neuroactive compounds and anti-inflammatory substances were enriched in NAs. In addition, increased levels of neuroactive metabolites in NAs were significantly associated with NA-enriched species that had three corresponding biosynthetic potentials: , and . Further analysis showed that the altered gut microbes and metabolites were linked to the enhanced brain connectivity in NAs, including the left dorsolateral prefrontal cortex (DLPFC)-left premotor cortex (PMC), left DLPFC-right primary motor area (M1), and right inferior frontal gyrus (IFG)-right M1. Finally, we found that neuroactive metabolites, altered microbe and enhanced brain connectivity contributed to the cognitive preservation in NAs. Our findings provide a comprehensive understanding of the microbiota-gut-brain axis in a long-lived population and insights into the establishment of a microbiome and metabolite homeostasis that can benefit human longevity and cognition by enhancing functional brain connectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984123 | PMC |
http://dx.doi.org/10.1080/19490976.2024.2331434 | DOI Listing |
Pain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFIndividual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks.
View Article and Find Full Text PDFElife
January 2025
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland.
Long-range axons are fundamental to brain connectivity and functional organization, enabling communication between different brain regions. Recent advances in experimental techniques have yielded a substantial number of whole-brain axonal reconstructions. While previous computational generative models of neurons have predominantly focused on dendrites, generating realistic axonal morphologies is more challenging due to their distinct targeting.
View Article and Find Full Text PDFEur Child Adolesc Psychiatry
January 2025
Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany.
Transcranial direct current stimulation (tDCS) remains experimental for many psychiatric disorders in adults. Particularly in childhood, there is limited research on the evidence for the efficacy and mechanisms of action of tDCS on the developing brain. The objective of this review is to identify published experimental studies to examine the efficacy and mechanisms of tDCS in children with psychiatric or developmental disorders in early (prepubertal) childhood (aged under 10 years).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!