Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To investigate the influences and mechanism of extracellular vesicles from dermal papilla cells (DPC-EVs) of mice on human hypertrophic scar fibroblasts (HSFs). The study was an experimental research. The primary dermal papilla cells (DPCs) of whiskers were extracted from 10 6-week-old male C57BL/6J mice and identified successfully. The DPC-EVs were extracted from the 3 to 5 passage DPCs by ultracentrifugation, and the morphology was observed through transmission electron microscope and the particle diameter was detected by nanoparticle tracking analyzer (=3) at 24 h after culture. The 3 passage of HSFs were divided into DPC-EV group and phosphate buffer solution (PBS) group, which were cultured with DPC-EVs and PBS, respectively. The cell scratch test was performed and cell migration rate at 24 h after scratching was calculated (=5). The cell proliferation levels at 0 (after 12 h of starvation treatment and before adding DPC-EVs or PBS), 24, 48, 72, and 96 h after culture were detected by using cell counting kit 8 (=4). The protein expressions of α-smooth muscle actin (α-SMA) and collagen typeⅠ (ColⅠ) in cells at 24 h after culture were detected by immunofluorescence method and Western blotting, and the protein expression of Krüppel-like factor 4 (KLF4) in cells at 24 h after culture was detected by Western blotting. After the 3 passage of HSFs were cultured with DPC-EVs for 24 h, the cells were divided into blank control group, KLF4 knockdown group, and KLF4 overexpression group according to the random number table. The cells in blank control group were only routinely cultured for 48 h. The cells in KLF4 knockdown group and KLF4 overexpression group were incubated with KLF4 knockdown virus for 24 h, then the cells in KLF4 knockdown group were routinely cultured for 24 h while the cells in KLF4 overexpression group were incubated with KLF4 overexpression virus for 24 h. The protein expressions of KLF4, α-SMA, and ColⅠ in cells were detected by Western blotting at 48 h after culture. At 24 h after culture, the extracted DPC-EVs showed vesicular structure with an average particle diameter of 108.8 nm. At 24 h after scratching, the migration rate of HSFs in PBS group was (54±10)%, which was significantly higher than (29±8)% in DPC-EV group (=4.37, <0.05). At 48, 72, and 96 h after culture, the proliferation levels of HSFs in DPC-EV group were significantly lower than those in PBS group (with values of 4.06, 5.76, and 6.41, respectively, <0.05). At 24 h after culture, the protein expressions of α-SMA and ColⅠ of HSFs in DPC-EV group were significantly lower than those in PBS group, while the protein expression of KLF4 was significantly higher than that in PBS group. At 48 h after culture, compared with those in blank control group, the protein expression of KLF4 of HSFs in KLF4 knockdown group was down-regulated, while the protein expressions of α-SMA and ColⅠ were both up-regulated; compared with those in KLF4 knockdown group, the protein expression of KLF4 of HSFs in KLF4 overexpression group was up-regulated, while the protein expressions of ColⅠ and α-SMA were down-regulated. The DPC-EVs of mice can inhibit the proliferation and migration of human HSFs and significantly inhibit the expressions of fibrosis markers α-SMA and ColⅠ in human HSFs by activating KLF4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.cn501225-20231107-00185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!