Introduction: There is emerging evidence that speech may be a potential indicator and manifestation of early Alzheimer's disease (AD) pathology. Therefore, the University of Edinburgh and Sony Research have partnered to create the Speech for Intelligent cognition change tracking and DEtection of Alzheimer's Disease (SIDE-AD) study, which aims to develop digital speech-based biomarkers for use in neurodegenerative disease.
Methods And Analysis: SIDE-AD is an observational longitudinal study, collecting samples of spontaneous speech. Participants are recruited from existing cohort studies as well as from the National Health Service (NHS)memory clinics in Scotland. Using an online platform, participants record a voice sample talking about their brain health and rate their mood, anxiety and apathy. The speech biomarkers will be analysed longitudinally, and we will use machine learning and natural language processing technology to automate the assessment of the respondents' speech patterns.
Ethics And Dissemination: The SIDE-AD study has been approved by the NHS Research Ethics Committee (REC reference: 23/WM/0153, protocol number AC23046, IRAS Project ID 323311) and received NHS management approvals from Lothian, Fife and Forth Valley NHS boards. Our main ethical considerations pertain to the remote administration of the study, such as taking remote consent. To address this, we implemented a consent process, whereby the first step of the consent is done entirely remotely but a member of the research team contacts the participant over the phone to consent participants to the optional, most sensitive, elements of the study. Results will be presented at conferences, published in peer-reviewed journals and communicated to study participants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982798 | PMC |
http://dx.doi.org/10.1136/bmjopen-2023-082388 | DOI Listing |
Mol Neurodegener
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
Alzheimers Res Ther
January 2025
Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.
Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.
Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.
Commun Biol
January 2025
Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!