The increasing production of plastic products and generation of plastic waste have had increasingly negative environmental impacts. Although recycling could reduce plastic pollution, microplastics can be generated during the process of crushing plastic products during mechanical recycling. We conducted crushing tests with 13 different plastics and documented the size distribution of particles generated. We then estimated the discharge of microplastics associated with recycling and their removal in wastewater treatment plants. We estimated that the global discharge of microplastics would increase from 0.017 Mt in 2000 to 0.749 Mt in 2060. Although mechanical recycling was estimated to account for 3.1% of the total emissions of microplastics for 2017, discharges of microplastics from plastic recycling may increase, even if plastic pollution from well-known sources decreases. Non-OECD (Organization for Economic Cooperation and Development) Asia could be a major discharging region and would play a vital role in reducing discharges of microplastics. Reduction of the discharge of microplastics will require less use of plastic products and upgrading wastewater treatment in many countries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.123855 | DOI Listing |
Mar Pollut Bull
January 2025
Water Quality Laboratory, National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300 Seri Kembangan, Selangor, Malaysia.
Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Resource Recirculation Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea. Electronic address:
Globally, various policies are being implemented to phase out plastic, and South Korea has set targets to reduce waste and increase recycling rates by 2030. Concerns about managing microplastic pollution are growing. Most advanced research has primarily focused on aquatic ecosystems.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India. Electronic address:
Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
Wastewater treatment plants (WWTPs) are one of the major collection points of microplastics (MPs). The MPs in influents and effluents of WWTPs were assessed for three cities on the southern coast of the Caspian Sea in the winter and spring seasons. The MP removal rate of WWTPs ranged between 71.
View Article and Find Full Text PDFWater Res
December 2024
Faculty of Engineering, Institute of Environmental and Process Engineering, RheinMain University of Applied Sciences, Wiesbaden, Germany.
Although the paper industry processes polymeric materials and discharges large amounts of wastewater, no research on microplastics in the wastewater from paper mills has been published to date. This study is the first to investigate this issue. The wastewater treatment plants of twelve representatively selected German paper mills were investigated using an analysis protocol based on µ-Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!