Miao medicine Gu Yan Xiao tincture inhibits mTOR to stimulate chondrocyte autophagy in a rabbit model of osteoarthritis.

J Ethnopharmacol

School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China. Electronic address:

Published: June 2024

Ethnopharmacological Relevance: The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use.

Aim Of The Study: This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy.

Materials And Methods: The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac.

Results: The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them.

Conclusions: Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118095DOI Listing

Publication Analysis

Top Keywords

yan xiao
16
xiao tincture
16
rabbit model
16
tincture
10
model osteoarthritis
8
type collagenase
8
effects tincture
8
matrix metalloproteases
8
autophagy chondrocytes
8
therapeutic effects
8

Similar Publications

[Zhuanggu Jianxi Decoction reduces synovial tissue inflammation in human knee osteoarthritis by regulating LXRs/NF-κB signaling pathway].

Zhongguo Zhong Yao Za Zhi

December 2024

Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education Fuzhou 350122, China.

This study aims to explore the mechanism of Zhuanggu Jianxi Decoction in reducing synovial tissue inflammation in human knee osteoarthritis(KOA) via the liver X receptors(LXRs)/nuclear factor(NF)-κB signaling pathway. The synovial tissue samples were collected from 5 healthy volunteers and 30 KOA synovitis patients and cultured in vitro. The samples from the heathy volunteers were set as the normal group, and those from KOA synovitis patients were randomized into synovitis, Zhuanggu Jianxi Decoction, LXRα inhibitor, and N-CoR inhibitor groups.

View Article and Find Full Text PDF

QM/MM study reveals novel mechanism of KRAS and KRAS catalyzed GTP hydrolysis.

Int J Biol Macromol

January 2025

Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China. Electronic address:

As a crucial drug target, KRAS can regulate most cellular processes involving guanosine triphosphate (GTP) hydrolysis. However, the mechanism of GTP hydrolysis has remained controversial over the past decades. Here, several different GTP hydrolysis mechanisms catalyzed by wild-type KRAS (WT-KRAS) and KRAS mutants were discussed via four QM/MM calculation models.

View Article and Find Full Text PDF

Dissecting the anti-pancreatic cancer mechanism of gold nanorods mediate photothermal therapy through quantitative proteomics analysis.

Biochem Biophys Res Commun

February 2025

Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, China. Electronic address:

Gold nanorods (GNRs) mediated photothermal therapy (PTT) represents a promising technique for cancer treatment, utilizing GNRs in conjunction with near-infrared (NIR) laser irradiation to convert energy into heat. In the present study, we employed PTT to induce apoptosis in pancreatic cancer cells and investigated its underlying mechanisms through quantitative proteomics analysis. Initially, we established that temperatures ranging from 47 to 51°C significantly enhance cellular apoptosis without inducing necrosis.

View Article and Find Full Text PDF

Bimetallic nanoreactor mediates cascade amplification of oxidative stress for complementary chemodynamic-immunotherapy of tumor.

Biomaterials

December 2024

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China. Electronic address:

As a promising tumor treatment, chemodynamic therapy (CDT) can specifically catalyze HO into the cytotoxic hydroxyl radical (·OH) via Fenton/Fenton-like reaction. However, the limited HO and weakly acidic pH in tumor microenvironment (TME) would severely restrict the therapeutic efficiency of CDT. Here, a weakly acid activated, HO self-supplied, hyaluronic acid (HA)-functionalized Ce/Cu bimetallic nanoreactor (CBPNs@HA) is elaborately designed for complementary chemodynamic-immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!