Background: The functional relevance of cyclic adenosine monophosphate (cAMP)-response element-binding protein 5 (CREB5) in cancers remains elusive, despite its significance as a member of the CREB family. The current research aims to explore the role of CREB5 in multiple cancers.
Methods: Pan-cancer analysis was performed to explore the expression patterns, prognostic value, mutational landscape as well as single-cell omic, immunologic, and drug sensitivity profiles of CREB5. Furthermore, we incorporated five distinct machine learning algorithms and determined that the least absolute shrinkage and selection operator-COX (LASSO-COX) algorithm, which exhibited the highest C index, was the optimal selection. Subsequently, we constructed a prognostic model centered around CREB5-associated genes. To elucidate the biological function of CREB5 in glioma cells, several assays including cell counting kit-8 (CCK-8), wound healing, transwell, flow cytometric were performed.
Results: CREB5 was overexpressed in pan-cancer and was linked to unfavorable prognosis, particularly in glioma. Furthermore, genetic alterations were determined in various types of cancer, and modifications in the CREB5 gene were linked to the prognosis. The single-cell omics and enrichment analyses showed that CREB5 was predominantly expressed in malignant glioma cells and was critically involved in the regulation of various oncogenic processes. Elevated levels of CREB5 were strongly linked with the infiltration of cancer-associated fibroblasts and the Th1 subset of CD4 T cells. The validated CREB5-associated prognostic model reliably predicted the prognosis and drug response of glioma patients. The in vitro experiments showed that CREB5 promoted glioma cell proliferation, invasion, migration, and gap phase 2/mitotic (G2/M) phase arrest and recruited M2 macrophages into glioma cells.
Conclusion: CREB5 has the potential to act as an oncogene and a biological marker in multiple cancers, particularly glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108307 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFCancer Genet
January 2025
Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530022, PR China. Electronic address:
Background: In recent years, concerns have emerged regarding the potential link between Juvenile idiopathic arthritis (JIA) and an elevated risk of developing breast cancer. However, the potential relationship between JIA and breast cancer is currently unclear. The objective of this study is to investigate the mechanism of JIA on cancer risk.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Chongqing Academy of Animal Sciences, Chongqing, China.
Hu sheep is characterized by its excellent fecundity and high adaptability to various ecological environments. To reveal the molecular basis involved in Hu sheep, we first examined the 10 index of neuroendocrine and metabolism in blood in Hu sheep during non-stress period (April-May) and stress period (July-August) using ELISA, including CRH, adrenocorticotropic hormone (ACTH), cortisol, aldosterone, adrenaline, T3,T4, SOD, GSH-PX, and T-AOC. Then we conducted the Whole genome DNA methylation sequencing in blood and performed the comparative analysis of global DNA methylation between the non-stress period and the stress period.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
During development, early regionalization segregates lineages and directs diverse cell fates. Sometimes, however, distinct progenitors produce analogous cell types. For example, V2a neurons, are excitatory interneurons that emerge from different anteroposterior progenitors.
View Article and Find Full Text PDFTohoku J Exp Med
December 2024
The First College of Clinical Medical Science, China Three Gorges University; Yichang Central People's Hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!