Noise-induced synaptic loss and its post-exposure recovery in CBA/CaJ vs. C57BL/6J mice.

Hear Res

Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Published: April 2024

Acute noise-induced loss of synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) has been documented in several strains of mice, but the extent of post-exposure recovery reportedly varies dramatically. If such inter-strain heterogeneity is real, it could be exploited to probe molecular pathways mediating neural remodeling in the adult cochlea. Here, we compared synaptopathy repair in CBA/CaJ vs. C57BL/6J, which are at opposite ends of the reported recovery spectrum. We evaluated C57BL/6J mice 0 h, 24 h, 2 wks or 8 wks after exposure for 2 h to octave-band noise (8-16 kHz) at either 90, 94 or 98 dB SPL, to compare with analogous post-exposure results in CBA/CaJ at 98 or 101 dB. We counted pre- and post-synaptic puncta in immunostained cochleas, using machine learning to classify paired (GluA2 and CtBP2) vs. orphan (CtBP2 only) puncta, and batch-processing to quantify immunostaining intensity. At 98 dB, both strains show ongoing loss of ribbons and synapses between 0 and 24 h, followed by partial recovery, however the extent and degree of these changes were greater in C57BL/6J. Much of the synaptic recovery is due to transient reduction in GluA2 intensity in synaptopathic regions. In contrast, CtBP2 intensity showed only transient increases (at 2 wks). Neurofilament staining revealed transient extension of ANF terminals in C57BL/6J, but not in CBA/CaJ, peaking at 24 h and reverting by 2 wks. Thus, although interstrain differences in synapse recovery are dominated by reversible changes in GluA2 receptor levels, the neurite extension seen in C57BL/6J suggests a qualitative difference in regenerative capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024800PMC
http://dx.doi.org/10.1016/j.heares.2024.108996DOI Listing

Publication Analysis

Top Keywords

post-exposure recovery
8
cba/caj c57bl/6j
8
c57bl/6j mice
8
recovery
6
c57bl/6j
6
noise-induced synaptic
4
synaptic loss
4
loss post-exposure
4
cba/caj
4
recovery cba/caj
4

Similar Publications

Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated.

View Article and Find Full Text PDF

An Unexpected Case of Generalized Tetanus.

Cureus

December 2024

Intensive Care Unit, Unidade Local de Saúde da Região de Aveiro, Aveiro, PRT.

Tetanus is a disease of the nervous system caused by a toxin produced by , an anaerobe found in high concentrations in the soil. The occurrence of tetanus is related to contaminated traumatic wounds, and most patients have had some failure in their immunization. However, there are rare case reports of generalized tetanus in patients with proper vaccination schemes who failed to receive appropriate prophylaxis after high-risk exposure.

View Article and Find Full Text PDF

In this manuscript, we present a novel mathematical model for understanding the dynamics of HIV/AIDS and analyzing optimal control strategies. To capture the disease dynamics, we propose a new Caputo-Fabrizio fractional-order mathematical model denoted as SEIEUPIATR, where the exposed class is subdivided into two categories: exposed-identified EI and exposed-unidentified EU individuals. Exposed-identified individuals become aware of the disease within three days, while exposed-unidentified individuals remain unaware for more than three days.

View Article and Find Full Text PDF

2-Phenoxyethanol (PhE) is an amphiphilic organic compound frequently used as a broad-spectrum preservative in cosmetic products and other consumer goods. PhE is also used as a biocidal component in occupational settings. A previous volunteer study by our working group following oral exposure to PhE showed that PhE is almost completely taken up into the human body followed by an extensive metabolization and fast urinary elimination.

View Article and Find Full Text PDF

Of 1.2 million Americans who would benefit from pre-exposure prophylaxis (PrEP), only 36% were prescribed PrEP in 2023. Project HOMES is an ongoing study that evaluates recovery residences for individuals in medication-assisted recovery from opioid use disorder across five Texas cities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!