Machine learning interatomic potentials (MLIPs) have emerged as a technique that promises quantum theory accuracy for reduced cost. It has been proposed [. , , 084111] that MLIPs trained on solely liquid water data cannot accurately transfer to the vapor-liquid equilibrium while recovering the many-body decomposition (MBD) analysis of gas-phase water clusters. This suggests that MLIPs do not directly learn the physically correct interactions of water molecules, limiting transferability. In this work, we show that MLIPs using equivariant architecture and trained on 3200 liquid water structures reproduces liquid-phase water properties (e.g., density within 0.003 g/cm between 230 and 365 K), vapor-liquid equilibrium properties up to 550 K, the MBD analysis of gas-phase water cluster up to six-body interactions, and the relative energy and the vibrational density of states of ice phases. We show that potentials developed using equivariant MLIPs allow transferability for arbitrary phases of water that remain stable in nanosecond long simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!