Leukemia is a class of hematologic malignancies, of which acute myeloid leukemia (AML) is the most common. Screening and diagnosis of AML are performed by microscopic examination or chemical testing of images of the patient's peripheral blood smear. In smear-microscopy, the ability to quickly identify, count, and differentiate different types of blood cells is critical for disease diagnosis. With the development of deep learning (DL), classification techniques based on neural networks have been applied to the recognition of blood cells. However, DL methods have high requirements for the number of valid datasets. This study aims to assess the applicability of the auxiliary classification generative adversarial network (ACGAN) in the classification task for small samples of white blood cells. The method is trained on the TCIA dataset, and the classification accuracy is compared with two classical classifiers and the current state-of-the-art methods. The results are evaluated using accuracy, precision, recall, and F1 score. The accuracy of the ACGAN on the validation set is 97.1 % and the precision, recall, and F1 scores on the validation set are 97.5 , 97.3, and 97.4 %, respectively. In addition, ACGAN received a higher score in comparison with other advanced methods, which can indicate that it is competitive in classification accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/bmt-2024-0028 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.
View Article and Find Full Text PDFNatural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America.
The latent viral reservoir remains the major barrier to HIV cure, placing the burden of strict adherence to antiretroviral therapy (ART) on people living with HIV to prevent recrudescence of viremia. For infants with perinatally acquired HIV, adherence is anticipated to be a lifelong need. In this study, we tested the hypothesis that administration of ART and viral Envelope-specific rhesus-derived IgG1 monoclonal antibodies (RhmAbs) with or without the IL-15 superagonist N-803 early in infection would limit viral reservoir establishment in SIV-infected infant rhesus macaques.
View Article and Find Full Text PDFBlood
January 2025
Stanford University Medical Center, Stanford, California, United States.
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy limited by graft-versus-host disease (GVHD). In preclinical studies and early-phase clinical studies enrichment of donor regulatory T cells (Tregs) appears to prevent GVHD and promote healthy immunity.We enrolled 44 patients on an open-label, single-center, phase 2 efficacy study investigating if a precision selected and highly purified Treg cell therapy manufactured from donor mobilized peripheral blood improves one-year GVHD-free relapse free survival (GRFS) after myeloablative conditioning (trial NCT01660607).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!