The objective of this study was to determine if U sediment concentrations in a U-contaminated wetland located within the Savannah River Site, South Carolina, were greater in the rhizosphere than in the nonrhizosphere. U concentrations were as much as 1100% greater in the rhizosphere than in the nonrhizosphere fractions; however and importantly, not all paired samples followed this trend. Iron (but not C, N, or S) concentrations were significantly enriched in the rhizosphere. XAS analyses showed that in both sediment fractions, U existed as UO coordinated with iron(III)-oxides and organic matter. A key difference between the two sediment fractions was that a larger proportion of U was adsorbed to Fe(III)-oxides, not organic matter, in the rhizosphere, where significantly greater total Fe concentrations and greater proportions of ferrihydrite and goethite existed. Based on 16S rRNA analyses, most bacterial sequences in both paired samples were heterotrophs, and population differences were consistent with the generally more oxidizing conditions in the rhizosphere. Finally, U was very strongly bound to the whole (unfractionated) sediments, with an average desorption value (U/U) of 3972 ± 1370 (mg-U/kg)/(mg-U/L). Together, these results indicate that the rhizosphere can greatly enrich U especially in wetland areas, where roots promote the formation of reactive Fe(III)-oxides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008245PMC
http://dx.doi.org/10.1021/acs.est.3c10481DOI Listing

Publication Analysis

Top Keywords

greater rhizosphere
8
rhizosphere nonrhizosphere
8
paired samples
8
sediment fractions
8
organic matter
8
rhizosphere
7
uranium biogeochemistry
4
biogeochemistry rhizosphere
4
rhizosphere contaminated
4
contaminated wetland
4

Similar Publications

Conservation tillage and fertilization are widely adopted in agricultural systems to enhance soil fertility and influence fungal communities, thereby improving agroecosystems. However, the effects of no-tillage combined with manure on grain yield, nitrogen use efficiency (NUE), soil fertility, and rhizosphere fungal communities remain poorly understood, particularly in rainfed wheat fields on the Loess Plateau. A 15-year field experiment was conducted at the Niujiawa Experimental Farm of the Cotton Research Institute, Shanxi Agricultural University.

View Article and Find Full Text PDF

Geographic Distribution Pattern Determines Soil Microbial Community Assembly Process in Rhizosphere Soil.

Microorganisms

December 2024

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

The geographic distribution patterns of soil microbial communities associated with cultivated plants in Northeast China were investigated. High-throughput sequencing revealed that the diversity and community assembly of bacterial and fungal communities in the inter-root soil varied significantly with geographic location. The study found that bacterial communities were predominantly assembled through stochastic processes at most sites, while fungal communities showed greater variation, with both stochastic and deterministic processes involved.

View Article and Find Full Text PDF

is a plant of considerable economic importance in China. However, root rot poses a significant threat to its yield and quality, leading to substantial economic losses. The disparities in rhizosphere soil fungal communities between healthy and root-rot-affected have not been thoroughly explored.

View Article and Find Full Text PDF

Fungi and soil bacteria are vital for organic matter decomposition and biogeochemical cycles, but excessive synthetic fertilizer use contributes to soil degradation and loss of biodiversity. Despite this, about 97% of soil microorganisms are unculturable, making them difficult to study. Metagenomics offers a solution, enabling the direct extraction of DNA from soil to uncover microbial diversity and functions.

View Article and Find Full Text PDF

Growth-promoting effects of self-selected microbial community on wheat seedlings in saline-alkali soil environments.

Front Bioeng Biotechnol

December 2024

Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China.

Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!