A phage-displayed disulfide constrained peptide discovery platform yields novel human plasma protein binders.

PLoS One

Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, United States of America.

Published: April 2024

Disulfide constrained peptides (DCPs) show great potential as templates for drug discovery. They are characterized by conserved cysteine residues that form intramolecular disulfide bonds. Taking advantage of phage display technology, we designed and generated twenty-six DCP phage libraries with enriched molecular diversity to enable the discovery of ligands against disease-causing proteins of interest. The libraries were designed based on five DCP scaffolds, namely Momordica charantia 1 (Mch1), gurmarin, Asteropsin-A, antimicrobial peptide-1 (AMP-1), and potato carboxypeptidase inhibitor (CPI). We also report optimized workflows for screening and producing synthetic and recombinant DCPs. Examples of novel DCP binders identified against various protein targets are presented, including human IgG Fc, serum albumin, vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor (PDGF). We identified DCPs against human IgG Fc and serum albumin with sub-micromolar affinity from primary panning campaigns, providing alternative tools for potential half-life extension of peptides and small protein therapeutics. Overall, the molecular diversity of the DCP scaffolds included in the designed libraries, coupled with their distinct biochemical and biophysical properties, enables efficient and robust identification of de novo binders to drug targets of therapeutic relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977726PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299804PLOS

Publication Analysis

Top Keywords

disulfide constrained
8
molecular diversity
8
dcp scaffolds
8
human igg
8
igg serum
8
serum albumin
8
phage-displayed disulfide
4
constrained peptide
4
peptide discovery
4
discovery platform
4

Similar Publications

FOXM1 is the "Achilles' heel" of cancers and hence the potential therapeutic target for anticancer drug discovery. In this work, we selected high affinity peptides against the protein of human DNA binding domain of FOXM1 (FOXM1-DBD) from the disulfide-constrained, phage displayed random cyclic heptapeptide library Ph.D.

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

Two-dimensional (2D) semiconductors, combining remarkable electrical properties and mechanical flexibility, offer fascinating opportunities for flexible integrated circuits (ICs). Despite notable progress, so far the showcased 2D flexible ICs have been constrained to basic logic gates and ring oscillators with a maximum integration scale of a few thin film transistors (TFTs), creating a significant disparity in terms of circuit scale and functionality. Here, we demonstrate medium-scale flexible ICs integrating both combinational and sequential elements based on 2D molybdenum disulfide (MoS).

View Article and Find Full Text PDF

ConoDL: a deep learning framework for rapid generation and prediction of conotoxins.

J Comput Aided Mol Des

December 2024

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins' vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides.

View Article and Find Full Text PDF

Transthyretin (TTR) amyloidosis is a progressive disorder characterized by peripheral neuropathy, autonomic dysfunction, and cardiomyopathy. The precise mechanism by which TTR misfolds and forms fibrils in vivo remains incompletely understood, posing challenges to the development of effective therapeutics. In this study, we reveal that the recently identified nonnative pathological species of TTR (NNTTR), which is enriched in the plasma of ttr-val30met gene carriers, exhibits strong amyloidogenic properties, making it a promising therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!